Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Housing conditions and stimulus females: a robust social discrimination task for studying male rodent social recognition

Abstract

Social recognition (SR) enables rodents to distinguish between familiar and novel conspecifics, largely through individual odor cues. SR tasks utilize the tendency for a male to sniff and interact with a novel individual more than a familiar individual. Many paradigms have been used to study the roles of the neuropeptides oxytocin and vasopressin in SR. However, inconsistencies in results have arisen within similar mouse strains, and across different paradigms and laboratories, making reliable testing of SR difficult. The current protocol details a novel approach that is replicable across investigators and in different strains of mice. We created a protocol that uses gonadally intact, singly housed females presented within corrals to group-housed males. Housing females singly before testing is particularly important for reliable discrimination. This methodology will be useful for studying short-term social memory in rodents, and may also be applicable for longer term studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The social discrimination task.
Figure 2: Results using different permutations of the social discrimination task.
Figure 3: Performance on the social discrimination task in three lines of knockout (–/−) mice.

Similar content being viewed by others

References

  1. Ferguson, J.N., Young, L.J. & Insel, T.R. The neuroendocrine basis of social recognition. Front. Neuroendocrinol. 23, 200–224 (2002).

    Article  CAS  Google Scholar 

  2. Spehr, M. et al. Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell. Mol. Life Sci. 63, 1476–1484 (2006).

    Article  CAS  Google Scholar 

  3. Brennan, P.A. & Kendrick, K.M. Mammalian social odours: attraction and individual recognition. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 2061–2078 (2006).

    Article  CAS  Google Scholar 

  4. Mateo, J.M. Development of individually distinct recognition cues. Dev. Psychobiol. 48, 508–519 (2006).

    Article  Google Scholar 

  5. Petrulis, A., Alvarez, P. & Eichenbaum, H. Neural correlates of social odor recognition and the representation of individual distinctive social odors within entorhinal cortex and ventral subiculum. Neuroscience 130, 259–274 (2005).

    Article  CAS  Google Scholar 

  6. Kogan, J.H., Frankland, P.W. & Silva, A.J. Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus 10, 47–56 (2000).

    Article  CAS  Google Scholar 

  7. Dantzer, R., Bluthe, R.M., Koob, G.F. & Le Moal, M. Modulation of social memory in male rats by neurohypophyseal peptides. Psychopharmacology (Berl) 91, 363–368 (1987).

    Article  CAS  Google Scholar 

  8. Winslow, J.T. & Camacho, F. Cholinergic modulation of a decrement in social investigation following repeated contacts between mice. Psychopharmacology (Berl) 121, 164–172 (1995).

    Article  CAS  Google Scholar 

  9. Engelmann, M., Wotjak, C.T. & Landgraf, R. Social discrimination procedure: an alternative method to investigate juvenile recognition abilities in rats. Physiol. Behav. 58, 315–321 (1995).

    Article  CAS  Google Scholar 

  10. Ferguson, J.N. et al. Social amnesia in mice lacking the oxytocin gene. Nat. Genet. 25, 284–288 (2000).

    Article  CAS  Google Scholar 

  11. Ferguson, J.N., Aldag, J.M., Insel, T.R. & Young, L.J. Oxytocin in the medial amygdala is essential for social recognition in the mouse. J. Neurosci. 21, 8278–8285 (2001).

    Article  CAS  Google Scholar 

  12. Wersinger, S.R., Ginns, E.I., O'Carroll, A.M., Lolait, S.J. & Young, W.S. III Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol. Psychiatry 7, 975–984 (2002).

    Article  CAS  Google Scholar 

  13. Choleris, E. et al. An estrogen-dependent four-gene micronet regulating social recognition: a study with oxytocin and estrogen receptor-alpha and -beta knockout mice. Proc. Natl. Acad. Sci. USA 100, 6192–6197 (2003).

    Article  CAS  Google Scholar 

  14. Wersinger, S.R. et al. Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression. Genes Brain Behav. 6, 540–551 (2007).

    Article  CAS  Google Scholar 

  15. Lee, H.-J., Caldwell, H.K., Macbeth, A.H., Tolu, S.G. & Young, W.S. III A conditional knockout mouse line of the oxytocin receptor. Endocrinology 149, 3256–3263 (2008).

    Article  CAS  Google Scholar 

  16. Bielsky, I.F., Hu, S.B., Szegda, K.L., Westphal, H. & Young, L.J. Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology 29, 483–493 (2004).

    Article  CAS  Google Scholar 

  17. Takayanagi, Y. et al. Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc. Natl. Acad. Sci. USA 102, 16096–16101 (2005).

    Article  CAS  Google Scholar 

  18. Jin, D. et al. CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446, 41–45 (2007).

    Article  CAS  Google Scholar 

  19. Bielsky, I.F., Hu, S.B., Ren, X., Terwilliger, E.F. & Young, L.J. The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron 47, 503–513 (2005).

    Article  CAS  Google Scholar 

  20. Benelli, A. et al. Polymodal dose–response curve for oxytocin in the social recognition test. Neuropeptides 28, 251–255 (1995).

    Article  CAS  Google Scholar 

  21. Popik, P. & van Ree, J.M. Oxytocin but not vasopressin facilitates social recognition following injection into the medial preoptic area of the rat brain. Eur. Neuropsychopharmacol. 1, 555–560 (1991).

    Article  CAS  Google Scholar 

  22. Popik, P., Vetulani, J. & Van Ree, J.M. Facilitation and attenuation of social recognition in rats by different oxytocin-related peptides. Eur. J. Pharmacol. 308, 113–116 (1996).

    Article  CAS  Google Scholar 

  23. Dluzen, D.E., Muraoka, S., Engelmann, M. & Landgraf, R. The effects of infusion of arginine vasopressin, oxytocin, or their antagonists into the olfactory bulb upon social recognition responses in male rats. Peptides 19, 999–1005 (1998).

    Article  CAS  Google Scholar 

  24. Bluthe, R.M. & Dantzer, R. Social recognition does not involve vasopressinergic neurotransmission in female rats. Brain Res. 535, 301–304 (1990).

    Article  CAS  Google Scholar 

  25. Taylor, G.T. Urinary odors and size protect juvenile laboratory mice from adult male attack. Dev. Psychobiol. 15, 171–186 (1982).

    Article  CAS  Google Scholar 

  26. Connor, J.L. & Lynds, P.G. Mouse aggression and the intruder-familiarity effect: evidence for multiple-factor determination c57bl. J. Comp. Physiol. Psychol. 91, 270–280 (1977).

    Article  CAS  Google Scholar 

  27. O'Donnell, V., Blanchard, R.J. & Blanchard, D.C. Mouse aggression increases after 24 h of isolation or housing with females. Behav. Neural. Biol. 32, 89–103 (1981).

    Article  CAS  Google Scholar 

  28. Nakamura, K., Kikusui, T., Takeuchi, Y. & Mori, Y. The critical role of familiar urine odor in diminishing territorial aggression toward a castrated intruder in mice. Physiol. Behav. 90, 512–517 (2007).

    Article  CAS  Google Scholar 

  29. de Catanzaro, D. & Gorzalka, B.B. Isolation-induced facilitation of male sexual behavior in mice. J. Comp. Physiol. Psychol. 93, 211–222 (1979).

    Article  CAS  Google Scholar 

  30. Sharp, J.L., Zammit, T.G., Azar, T.A. & Lawson, D.M. Stress-like responses to common procedures in male rats housed alone or with other rats. Contemp. Top. Lab. Anim. Sci. 41, 8–14 (2002).

    PubMed  Google Scholar 

  31. Todrank, J., Heth, G. & Johnston, R.E. Kin recognition in golden hamsters: evidence for kinship odours. Anim. Behav. 55, 377–386 (1998).

    Article  CAS  Google Scholar 

  32. Hopp, S.L., Owren, M.J. & Marion, J.R. Olfactory discrimination of individual littermates in rats (Rattus norvegicus). J. Comp. Psychol. 99, 248–251 (1985).

    Article  CAS  Google Scholar 

  33. Kavaliers, M. et al. Oxytocin and estrogen receptor alpha and beta knockout mice provide discriminably different odor cues in behavioral assays. Genes Brain Behav. 3, 189–195 (2004).

    Article  CAS  Google Scholar 

  34. Beynon, R.J. & Hurst, J.L. Urinary proteins and the modulation of chemical scents in mice and rats. Peptides 25, 1553–1563 (2004).

    Article  CAS  Google Scholar 

  35. Hurst, J.L., Thom, M.D., Nevison, C.M., Humphries, R.E. & Beynon, R.J. MHC odours are not required or sufficient for recognition of individual scent owners. Proc. Biol. Sci. 272, 715–724 (2005).

    Article  Google Scholar 

  36. Cheetham, S.A. et al. The genetic basis of individual-recognition signals in the mouse. Curr. Biol. 17, 1771–1777 (2007).

    Article  CAS  Google Scholar 

  37. Sherborne, A.L. et al. The genetic basis of inbreeding avoidance in house mice. Curr. Biol. 17, 2061–2066 (2007).

    Article  CAS  Google Scholar 

  38. Insel, T.R. & Fernald, R.D. How the brain processes social information: searching for the social brain. Annu. Rev. Neurosci. 27, 697–722 (2004).

    Article  CAS  Google Scholar 

  39. Kudryavtseva, N.N., Bondar, N.P. & Avgustinovich, D.F. Association between experience of aggression and anxiety in male mice. Behav. Brain Res. 133, 83–93 (2002).

    Article  Google Scholar 

  40. Muroi, Y., Ishii, T., Komori, S. & Nishimura, M. A competitive effect of androgen signaling on male mouse attraction to volatile female mouse odors. Physiol. Behav. 87, 199–205 (2006).

    Article  CAS  Google Scholar 

  41. Carr, W.J., Loeb, L.S. & Dissinger, M.L. Responses of rats to sex odors. J. Comp. Physiol. Psychol. 59, 370–377 (1965).

    Article  CAS  Google Scholar 

  42. Ingersoll, D.W. & Weinhold, L.L. Modulation of male mouse sniff, attack, and mount behaviors by estrous cycle-dependent urinary cues. Behav. Neural. Biol. 48, 24–42 (1987).

    Article  CAS  Google Scholar 

  43. Macbeth, A.H., Lee, H.J., Edds, J. & Young, W.S. III Oxytocin and the oxytocin receptor underlie intrastrain, but not interstrain, social recognition. Genes. Brain. Behav. 8, 558–567 (2009).

    Article  CAS  Google Scholar 

  44. Lim, M.M. & Young, L.J. Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Horm. Behav. 50, 506–517 (2006).

    Article  CAS  Google Scholar 

  45. Caldwell, H.K., Lee, H.J., Macbeth, A.H. & Young, W.S. III Vasopressin: behavioral roles of an 'original' neuropeptide. Prog. Neurobiol. 84, 1–24 (2008).

    Article  CAS  Google Scholar 

  46. Caldwell, H.K. & Young, W.S. Oxytocin and Vasopressin: Genetics and Behavioral Implications in Handbook of Neurochemistry and Molecular Neurobiology: Neuroactive Proteins and Peptides, 3rd edition (ed R. Lim) 573–607 (Springer, 2006). pp. 573–607.

  47. Popik, P. & Vetulani, J. Opposite action of oxytocin and its peptide antagonists on social memory in rats. Neuropeptides 18, 23–27 (1991).

    Article  CAS  Google Scholar 

  48. Wersinger, S.R., Temple, J.L., Caldwell, H.K. & Young, W.S. III Inactivation of the oxytocin and the vasopressin (Avp) 1b receptor genes, but not the Avp 1a receptor gene, differentially impairs the Bruce effect in laboratory mice (Mus musculus). Endocrinology 149, 116–121 (2008).

    Article  CAS  Google Scholar 

  49. Winslow, J.T. Mouse social recognition and preference. Curr. Protoc. Neurosci. 8 Unit 8.16 (2003).

  50. Anagnostopoulos, A.V., Mobraaten, L.E., Sharp, J.J. & Davisson, M.T. Transgenic and knockout databases: behavioral profiles of mouse mutants. Physiol. Behav. 73, 675–689 (2001).

    Article  CAS  Google Scholar 

  51. Ennaceur, A., Michalikova, S. & Chazot, P.L. Models of anxiety: responses of rats to novelty in an open space and an enclosed space. Behav. Brain Res. 171, 26–49 (2006).

    Article  CAS  Google Scholar 

  52. Brooks, S.P., Pask, T., Jones, L. & Dunnett, S.B. Behavioural profiles of inbred mouse strains used as transgenic backgrounds. II: cognitive tests. Genes Brain Behav. 4, 307–317 (2005).

    Article  CAS  Google Scholar 

  53. Moy, S.S. et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav. 3, 287–302 (2004).

    Article  CAS  Google Scholar 

  54. Sankoorikal, G.M., Kaercher, K.A., Boon, C.J., Lee, J.K. & Brodkin, E.S. A mouse model system for genetic analysis of sociability: C57BL/6J versus BALB/cJ inbred mouse strains. Biol. Psychiatry 59, 415–423 (2006).

    Article  CAS  Google Scholar 

  55. Crawley, J. & Goodwin, F.K. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol. Biochem. Behav. 13, 167–170 (1980).

    Article  CAS  Google Scholar 

  56. Noldus, L.P., Trienes, R.J., Hendriksen, A.H., Jansen, H. & Jansen, R.G. The Observer Video-Pro: new software for the collection, management, and presentation of time-structured data from videotapes and digital media files. Behav. Res. Methods Instrum. Comput. 32, 197–206 (2000).

    Article  CAS  Google Scholar 

  57. Guan, X. & Dluzen, D.E. Age related changes of social memory/recognition in male Fischer 344 rats. Behav. Brain Res. 61, 87–90 (1994).

    Article  CAS  Google Scholar 

  58. Nelson, J.F., Felicio, L.S., Randall, P.K., Sims, C. & Finch, C.E. A longitudinal study of estrous cyclicity in aging C57BL/6J mice: I. Cycle frequency, length and vaginal cytology. Biol. Reprod. 27, 327–339 (1982).

    Article  CAS  Google Scholar 

  59. Crawley, J.N. et al. Social approach behaviors in oxytocin knockout mice: comparison of two independent lines tested in different laboratory environments. Neuropeptides 41, 145–163 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Scott Wersinger for his helpful review of an early version of this paper. The authors appreciate the excellent technical support provided by Emily Shepard, James Heath, Anna Brownstein and the Building 49 animal facility. This research was supported by the NIMH Intramural Research Program (Z01-MH-002498-20).

Author information

Authors and Affiliations

Authors

Contributions

A.H.M. contributed to study design, measurements, analysis and writing. J.S.E. contributed to measurements and analysis. W.S.Y. contributed to design, analysis and writing.

Corresponding author

Correspondence to W Scott Young III.

Supplementary information

Supplementary Movie

Investigation of females during the social discrimination task. Note the insertion of the subject male’s nose between the bars of both corrals in order to investigate both stimulus females. This can be observed when the male is on the near and far side of the corrals. The beeping heard in the background is the timer used by the experimenter during live scoring; the noise does not seem to adversely affect the subject male’s behavior. (MOV 4379 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macbeth, A., Edds, J. & Young, W. Housing conditions and stimulus females: a robust social discrimination task for studying male rodent social recognition. Nat Protoc 4, 1574–1581 (2009). https://doi.org/10.1038/nprot.2009.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.141

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing