Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Reverse-phase protein lysate microarrays for cell signaling analysis

Abstract

'Reverse-phase' protein lysate microarray (RPA) assays use micro-scale, cell lysate dot blots that are printed to a substrate, followed by quantitative immunochemical protein detection, known to be particularly effective across many samples. Large-scale sample collection is a labor-intensive and time-consuming process; the information yielded from RPA assays, however, provides unique opportunities to experimentally interpret theoretical protein networks quantitatively. When specific antibodies are used, RPA can generate 1,000 times more data points using 10,000 times less sample volume than an ordinary western blot, enabling researchers to monitor quantitative proteomic responses for various time-scale and input-dose gradients simultaneously. Hence, the RPA system can be an excellent method for experimental validation of theoretical protein network models. Besides the initial screening of primary antibodies, collection of several hundreds of sample lysates from 1- to 8-h periods can be completed in 10 d; subsequent RPA printing and signal detection steps require an additional 2–3 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outline of reverse-phase protein lysate microarray protocol for quantitative protein expression analysis.
Figure 2: 'Reverse-phase' protein lysate microarray (RPA) images and data output.
Figure 3: Screenshot of the Aushon BioSystems 2470 Microarray Graphical User Interface (GUI).
Figure 4: Preparation of twofold serial dilutions in a 384-and 1,536-well microtiter plate.

Similar content being viewed by others

References

  1. Paweletz, C.P. et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Rudelius, M. et al. Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood 108, 1668–1676 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tibes, R. et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol. Cancer Ther. 5, 2512–2521 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Wulfkuhle, J.D. et al. Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics 3, 2085–2090 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Ramalingam, S. et al. Quantitative assessment of the p53-Mdm2 feedback loop using protein lysate microarrays. Cancer Res. 67, 6247–6252 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Nishizuka, S. et al. Quantitative protein network monitoring in response to DNA damage. J. Proteome Res. 7, 803–808 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Nishizuka, S. & Spurrier, B. Experimental validation for quantitative protein network models. Curr. Opin. Biotechnol. 19, 41–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Utz, P.J. Protein arrays for studying blood cells and their secreted products. Immunol. Rev. 204, 264–282 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Liotta, L. & Petricoin, E. Molecular profiling of human cancer. Nat. Rev. Genet. 1, 48–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Chan, S.M. et al. Protein microarrays for multiplex analysis of signal transduction pathways. Nat. Med. 10, 1390–1396 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Winters, M.E. et al. Supra-additive growth inhibition by a celecoxib analogue and carboxyamido-triazole is primarily mediated through apoptosis. Cancer Res. 65, 3853–3860 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Sevecka, M. & MacBeath, G. State-based discovery: a multidimensional screen for small-molecule modulators of EGF signaling. Nat. Methods 3, 825–831 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spurrier, B. et al. Antibody screening database for protein kinetic modeling. Proteomics 7, 3259–3263 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Nishizuka, S. et al. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc. Natl Acad. Sci. USA 100, 14229–14234 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nishizuka, S. et al. Diagnostic markers that distinguish colon and ovarian adenocarcinomas: identification by genomic, proteomic, and tissue array profiling. Cancer Res. 63, 5243–5250 (2003).

    CAS  PubMed  Google Scholar 

  16. Sasagawa, S., Ozaki, Y., Fujita, K. & Kuroda, S. Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat. Cell Biol. 7, 365–373 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Lequin, R.M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 51, 2415–2418 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Anderson, L. & Seilhamer, J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18, 533–537 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Nishizuka, S. Profiling cancer stem cells using protein array technology. Eur. J. Cancer 42, 1273–1282 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Major, S.M. et al. AbMiner: a bioinformatic resource on available monoclonal antibodies and corresponding gene identifiers for genomic, proteomic, and immunologic studies. BMC Bioinformatics 7, 192 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nishizuka, S., Washburn, N.R. & Munson, P.J. Evaluation method of ordinary flatbed scanners for quantitative density analysis. Biotechniques 40, 442, 444, 446 passim (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Carlisle, A.J. et al. Development of a prostate cDNA microarray and statistical gene expression analysis package. Mol. Carcinog. 28, 12–22 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Ramaswamy, A. et al. Application of protein lysate microarrays to molecular marker verification and quantification. Proteome Sci. 3, 9 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Calvert, V.S. et al. Development of multiplexed protein profiling and detection using near infrared detection of reverse-phase protein microarrays. Clin. Proteomics J. 1, 81–89 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. John Austin, Toni Holway and Peter Honkanen of Auslon BioSystems for excellent protein microarray technical support, and Dr. Lynn Young for customizing image processing programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Nishizuka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spurrier, B., Ramalingam, S. & Nishizuka, S. Reverse-phase protein lysate microarrays for cell signaling analysis. Nat Protoc 3, 1796–1808 (2008). https://doi.org/10.1038/nprot.2008.179

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.179

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing