Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Isolation of intact RNA from cytometrically sorted Saccharomyces cerevisiae for the analysis of intrapopulation diversity of gene expression

Abstract

Characterizing and understanding the functional heterogeneity in a given population on the cellular and molecular level is a great challenge in microbiology. Each microorganism contributes differently to the overall performance of the community and responds differently to changing microenvironmental conditions. Here, we present a method for isolation of intact RNA out of small subpopulations of live Saccharomyces cerevisiae cells for differential gene expression analysis. The protocol includes fluorescence staining, flow cytometric analysis and sorting of live yeast cells, subsequent isolation of RNA from the resulting subpopulations and finally RNA quantification and integrity check. The isolated RNA can be transcribed into cDNA and successfully used for microarray analysis. This aids in relating molecular regulation processes within subpopulations with the dynamics and functioning of the entire population. The procedure can be accomplished in 2 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Gate settings for the sorting procedure.
Figure 3: Microarray for the analysis of gene expression of a vital, stained and sorted subpopulation of S. cerevisiae with high affinity to 2-NBDglucose, harvested at a dilution rate of D = 0.160 h−1, and of cells from the whole population without further treatment grown at the same dilution rate.
Figure 4: Agarose gel showing RNA isolated from 5 × 107 freshly harvested (1–5) and frozen (with dry ice; 6–10) S. cerevisiae cells after treatment with lyticase (300 U in 100 μl) for various durations (2–30 min).
Figure 5: Agarose gel showing RNA isolated from 5 × 107 frozen (with dry ice) S. cerevisiae cells after treatment with lyticase (100 U in 100 μl (1–4) and 200 U in 100 μl (5–8)) at several time intervals (5–30 min).
Figure 6: Fractionation of RNA isolated from 5 × 107 S. cerevisiae cells harvested after triple-staining.
Figure 7: Agarose gel showing RNA isolated from 5 × 107 sorted S. cerevisiae cells, frozen with dry ice.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Kleinsteuber, S., Riis, V., Fetzer, I., Harms, H. & Müller, S. Population dynamics of a microbial consortium during growth on diesel fuel in saline environments. Appl. Environ. Microbiol. 72, 3531–3542 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shi, L. et al. Limits of propidium iodide (PI) as a cell viability indicator for environmental bacteria. Cytometry A 71, 592–598 (2007).

    Article  PubMed  Google Scholar 

  3. Becker, T. et al. Future aspects of bioprocess monitoring. Adv. Biochem. Eng./Biotechnol. 105, 249–293 (2007).

    CAS  Google Scholar 

  4. Han, J. & Lillard, S.J. In-situ sampling and separation of RNA from individual mammalian cells. Anal. Chem. 72, 4073–4093 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Juan, G., Hernando, E. & Cordon-Cardo, C. Separation of live cells in different phases of the cell cycle for gene expression analysis. Cytometry 49, 170–175 (2002).

    Article  PubMed  Google Scholar 

  6. Bryant, Z. et al. Characterization of differentially expressed genes in purified Drosophila follicle cells: toward a general strategy for cell type-specific developmental analysis. Proc. Natl. Acad. Sci. USA 96, 5559–5564 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Coombs, J., Darley, W.M., Holm-Hansen, O. & Volcani, B.E. Studies on the biochemistry and fine structure of silica shell formation in diatoms. Chemical composition of Navicula pelliculosa during silicon-starvation synchrony. Plant Physiol. 42, 1601–1606 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pessot, C.A. et al. Presence of RNA in the sperm nucleolus. Biochem. Biophys. Res. Commun. 158, 272–278 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Bremer, H. & Dennis, P.P. Modulation of chemical composition and other parameters of the cell by growth rate. in Escherichia coli and Salmonella: Cellular and Molecular Biology (Ed. in Chief Neidhardt, F.C.) 1555–1569 (ASM Press, Washington, DC, 1996).

    Google Scholar 

  10. Mutiu, A.I. & Brandl, C.J. RNA isolation from yeast using silica matrices. J. Biomol. Tech. 16, 316–317 (2005).

    PubMed  PubMed Central  Google Scholar 

  11. Ertugay, N. & Hamamci, H. Continuous cultivation of bakers' yeast: change in cell composition at different dilution rates and effect of heat stress on trehalose level. Folia Microbiol. (Praha) 42, 463–467 (1997).

    Article  CAS  Google Scholar 

  12. Nissen, T., Schulze, U., Nielsen, J. & Villadse, J. Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143, 203–218 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Sebastian, J., Mian, F. & Halvorson, H.O. Effect of the growth rate on the level of the DNA-dependent RNA polymerases in Saccharomyces cerevisiae. FEBS Lett. 34, 159–162 (1973).

    Article  CAS  PubMed  Google Scholar 

  14. Gorokhova, E. Effects of preservation and storage of microcrustaceans in RNAlater on RNA and DNA degradation. Limnol. Oceanogr. Methods 3, 143–148 (2005).

    Article  CAS  Google Scholar 

  15. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. & Rutter, W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  PubMed  Google Scholar 

  16. Schmitt, M.E., Brown, T.A. & Trumpower, B.L. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18, 3091–3092 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kohrer, K. & Domdey, H. Preparation of high molecular weight RNA. Methods Enzymol. 194, 398–405 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. McEntee, C.M. & Hudson, A.P. Preparation of RNA from unspheroplasted yeast cells (Saccharomyces cerevisiae). Anal. Biochem. 176, 303–306 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Felipe, M.S.S., Rogelin, R., Azevedo, M.O. & Astolfi-Filho, S. Extended application of an efficient method for RNA isolation from different organisms. Biotechnol. Tech. 7, 639–644 (1993).

    Article  CAS  Google Scholar 

  21. Fox et al. A gene expression fingerprint of C. elegans embryonic motor neurons. BMC Genomics 6, 42 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Achilles, J., Müller, S., Bley, T. & Babel, W. Affinity of single S. cerevisiae cells to 2-NBDglucose under changing substrate concentrations. Cytometry A 61A, 88–98 (2004).

    Article  CAS  Google Scholar 

  23. Achilles, J., Harms, H. & Müller, S. Analysis of living S. cerevisiae cell states—a three colour approach. Cytometry A 69A, 173–177 (2006).

    Article  Google Scholar 

  24. Kurimoto, K. et al. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 34, e42 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kurimoto, K., Yabuta, Y., Ohinata, Y. & Saitou, M. Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat. Protoc. 2, 739–752 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Schatzmann, H. Anaerobes Wachstum von Saccharomyces cerevisiae. Regulatorische Aspekte des glycolytischen und respirativen Stoffwechsels PhD thesis, no. 5504 (ETH, Zürich, 1975).

    Google Scholar 

  27. Diez, C., Bertsch, G. & Simm, A. Isolation of full-size mRNA from cells sorted by flow cytometry. J. Biochem. Biophys. Methods 40, 69–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Esser, C., Göttlinger, C., Kremer, J., Hundeiker, C. & Radbruch, A. Isolation of full-size mRNA from ethanol-fixed cells after cellular immunofluorescence staining and fluorescence-activated cell sorting (FACS). Cytometry 21, 282–386 (1995).

    Article  Google Scholar 

  29. Klis, F.M., Mol, P., Hellingwerf, K. & Brul, S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26, 239–256 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Kretschmer, M., Schellenberger, W., Otto, A., Kessler, R. & Hofmann, E. Fructose-2,6-bisphosphatase and 6-phosphofructo-2-kinase are separable in yeast. Biochem. J. 246, 755–759 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Engewald and C. Süring for technical assistance. We thank T. Hübschmann for technical assistance as well as for helpful discussions and A. Pernthaler for critical reading of the manuscript. We also thank C. Repenning and M. Pähler from the working group 'Chip Technology' at the Institute of Technical Chemistry of the University of Hannover. This work was supported by the Deutsche Forschungsgemeinschaft (MU 1089/5-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susann Müller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achilles, J., Stahl, F., Harms, H. et al. Isolation of intact RNA from cytometrically sorted Saccharomyces cerevisiae for the analysis of intrapopulation diversity of gene expression. Nat Protoc 2, 2203–2211 (2007). https://doi.org/10.1038/nprot.2007.322

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.322

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing