Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Rapid solid-phase synthesis of a calmodulin-binding peptide using controlled microwave irradiation

Abstract

A rapid and efficient microwave-assisted solid-phase synthesis method for the preparation of a nonapeptide using conventional Fmoc/But orthogonal protection strategy is described. In this protocol, the coupling steps are performed within 5 min at 60 °C and the Fmoc-deprotection steps are completed within 3 min at 60 °C using a dedicated single-mode microwave peptide synthesizer utilizing temperature-controlled conditions. It is demonstrated that the model nonapeptide (containing the calmodulin-binding octapeptide sequence) is synthesized in a shorter time (3.5 h) and with high purity (>95%) under microwave irradiation conditions in comparison with a reference peptide that is obtained by standard methods at room temperature (within 11 h).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Temperature profile for a microwave-assisted peptide coupling step (Fmoc-amino acid, DIC, HOBt, NMP and resin; ca. 1 ml total volume) heating to 60 °C (10 W maximum magnetron power) for 5 min in a single-mode microwave peptide synthesizer.
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Marx, V. Watching peptide drugs grow up. Chem. Eng. News 83, 17–24 (2004).

    Google Scholar 

  2. Pichereau, C. & Allary, C. Therapeutic peptides under the spotlight. Euro. Biopharm. Rev. (WINTER), 88–93 (2005).

  3. Chan, W.C. & White, P.D. Fmoc Solid Phase Peptide Synthesis (Oxford University Press, Oxford, 2000).

    Google Scholar 

  4. Hodge, P. Polymer-supported organic reactions: what takes places in the beads? Chem. Soc. Rev. 26, 417–424 (1997).

    Article  CAS  Google Scholar 

  5. Günther, W., Matthias, U. & Birgitt, S. Medicinal chemistry: challenges and opportunities. Angew. Chem. Int. Ed. 40, 3341–3350 (2001).

    Article  Google Scholar 

  6. Tam, J.P. & Lu, Y.-A. Coupling difficulty associated with interchain clustering and phase-transition in solid-phase peptide synthesis. J. Am. Chem. Soc. 117, 12058–12063 (1995).

    Article  CAS  Google Scholar 

  7. Hyde, C., Johnson, T., Owen, D., Quibell, M. & Sheppard, R.C. Some 'difficult sequences' made easy: a study of interchain association in solid-phase peptide synthesis. Int. J. Peptide Protein Res. 43, 431–440 (1994).

    Article  CAS  Google Scholar 

  8. Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 43, 6250–6284 (2004).

    Article  CAS  Google Scholar 

  9. Kappe, C.O. & Stadler, A. Microwaves in Organic and Medicinal Chemistry (Wiley-VCH, Weinheim, Germany, 2005).

    Book  Google Scholar 

  10. Loupy, A. (ed.) Microwaves in Organic Synthesis 2nd edn. (Wiley-VCH, Weinheim, Germany, 2006).

    Book  Google Scholar 

  11. Kappe, C.O. & Dallinger, D. The impact of microwave synthesis on drug discovery. Nat. Rev. Drug Discov. 5, 51–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Yu, H.M., Chen, S.-T. & Wang, K.T. Enhanced coupling efficiency in solid phase peptide synthesis by microwave irradiation. J. Org. Chem. 57, 4781–4784 (1992).

    Article  CAS  Google Scholar 

  13. Erdelyi, M. & Gogoll, A. Rapid microwave-assisted solid-phase peptide synthesis. Synthesis 11, 1592–1596 (2002).

    Google Scholar 

  14. Matsushita, T., Hinou, H., Kurogochi, M., Shimizu, H. & Nishimura, S.I. Rapid microwave-assisted solid-phase glycopeptide synthesis. Org. Lett. 7, 877–880 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Brandt, M., Gammeltoft, S. & Jensen, K.J. Microwave heating for solid-phase peptide synthesis: general evaluation and application to 15-mer phosphopeptides. Int. J. Pept. Prot. Res. 12, 349–357 (2006).

    CAS  Google Scholar 

  16. Gorske, B.C., Jewell, S.A., Guerard, E.J. & Blackwell, H.E. Expedient synthesis and design strategies for new peptoid construction. Org. Lett. 7, 1521–1524 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Olivos, H.J., Alluri, P.G., Reddy, M.M., Salony, D. & Kodadek, T. Microwave-assisted solid-phase synthesis of peptoids. Org. Lett. 4, 4057–4059 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Fara, M.A., Díaz-Mochón, H.J. & Bradley, M. Microwave-assisted coupling with DIC/HOBt for the synthesis of difficult peptoids and fluorescently labelled peptides—a gentle heat goes a long way. Tetrahedron Lett. 47, 1011–1014 (2006).

    Article  CAS  Google Scholar 

  19. Murray, J.K. & Gellman, S.H. Application of microwave irradiation to the synthesis of 14-helical β-peptides. Org. Lett. 7, 1517–1520 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Murray, J.K. et al. Efficient synthesis of a β-peptide combinatorial library with microwave irradiation. J. Am. Chem. Soc. 127, 13271–13280 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Murray, J.K. & Gellman, S.H. Microwave-assisted parallel synthesis of a 14-helical β-peptide library. J. Comb. Chem. 8, 58–65 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Murray, J.K. & Gellman, S.H. Parallel synthesis of peptide libraries using microwave irradiation. Nat. Protoc. 2, 624–631 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Collins, J.M. & Collins, M.J. Microwave-enhanced solid-phase peptide synthesis. in Microwaves in Organic Synthesis 2nd edn. (ed. Loupy, A.) 898–958 (Wiley-VCH, Weinheim, Germany, 2006).

    Chapter  Google Scholar 

  24. Palasek, S.A., Cox, Z.J. & Collins, J.M. Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis. J. Pept. Sci. 13, 143–148 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Collins, J.M. & Leadbeater, N.E. Microwave energy: a versatile tool for the biosciences. Org. Biomol. Chem. 5, 1141–1150 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Rizzolo, F., Sabatino, G., Chelli, M., Rovero, P. & Papini, A.M. A convenient microwave-enhanced solid-phase synthesis of difficult peptide sequence: case study of Gramicidin A and CSF114(Glc). Int. J. Pept. Res. Ther. 13, 203–208 (2007).

    Article  CAS  Google Scholar 

  27. Bacsa, B., Desai, B., Dibo, G. & Kappe, C.O. Rapid solid-phase peptide synthesis using thermal and controlled microwave irradiation. J. Pept. Sci. 12, 633–638 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Nevalainen, L.T. et al. Characterization of novel calmodulin-binding peptides with distinct inhibitory effects on calmodulin-dependent enzymes. Biochem. J. 321, 107–115 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank piCHEM R&D for access to the HPLC, lyophilizer and MALDI-TOF MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Oliver Kappe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacsa, B., Kappe, C. Rapid solid-phase synthesis of a calmodulin-binding peptide using controlled microwave irradiation. Nat Protoc 2, 2222–2227 (2007). https://doi.org/10.1038/nprot.2007.300

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.300

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing