Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Frontal affinity chromatography: sugar–protein interactions

Abstract

Frontal affinity chromatography using fluorescence detection (FAC-FD) is a versatile technique for the precise determination of dissociation constants (Kd) between glycan-binding proteins (lectins) and fluorescent-labeled glycans. A series of glycan-containing solutions is applied to a lectin-immobilized column, and the elution profile of each glycan (termed the 'elution front', V) is compared with that (V0) for an appropriate control. Here we describe our standard protocol using an automated FAC system (FAC-1), consisting of two isocratic pumps, an autosampler, a column oven and two miniature columns connected to a fluorescence detector. Analysis time for 100 sugar–protein interactions is 10 h, using as little as 2.5 pmol of pyridylaminated (PA) oligosaccharide per analysis. Using FAC-FD, we have so far obtained quantitative interaction data of >100 lectins for >100 PA oligosaccharides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of frontal affinity chromatography.
Figure 2: Automated frontal affinity chromatography (FAC) system.
Figure 3
Figure 4: Preparation of a column.
Figure 5: Screening and analysis of Griffonia simplicifolia lectin-II (GSL-II).
Figure 6

Similar content being viewed by others

References

  1. Crocker, P.R., Paulson, J.C. & Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7, 255–266 (2007).

    Article  CAS  Google Scholar 

  2. Robinson, M.J., Sancho, D., Slack, E.C., LeibundGut-Landmann, S. & Reis e Sousa, C. Myeloid C-type lectins in innate immunity. Nat. Immunol. 7, 1258–1265 (2006).

    Article  CAS  Google Scholar 

  3. van Vliet, S.J., Dunnen, J.D., Gringhuis, S.I., Geijtenbeek, T.B. & van Kooyk, Y. Innate signaling and regulation of Dendritic cell immunity. Curr. Opin. Immunol. 19, 435–440 (2007).

    Article  CAS  Google Scholar 

  4. Sharon, N. Lectins: carbohydrate-specific reagents and biological recognition molecules. J. Biol. Chem. 282, 2753–2764 (2007).

    Article  CAS  Google Scholar 

  5. Sharon, N. & Lis, H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14, 53R–62R (2004).

    Article  CAS  Google Scholar 

  6. Hirabayashi, J. et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta 1572, 232–254 (2002).

    Article  CAS  Google Scholar 

  7. Blixt, O. et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. USA 101, 17033–17038 (2004).

    Article  CAS  Google Scholar 

  8. Kuno, A. et al. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat. Methods 2, 851–856 (2005).

    Article  CAS  Google Scholar 

  9. Hirabayashi, J., Hayama, K., Kaji, H., Isobe, T. & Kasai, K. Affinity capturing and gene assignment of soluble glycoproteins produced by the nematode Caenorhabditis elegans. J. Biochem. (Tokyo) 132, 103–114 (2002).

    Article  CAS  Google Scholar 

  10. Hirabayashi, J. Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconj. J. 21, 35–40 (2004).

    Article  Google Scholar 

  11. Knibbs, R.N., Osborne, S.E., Glick, G.D. & Goldstein, I.J. Binding determinants of the sialic acid-specific lectin from the slug Limax flavus. J. Biol. Chem. 268, 18524–18531 (1993).

    CAS  PubMed  Google Scholar 

  12. Blixt, O., Collins, B.E., van den Nieuwenhof, I.M., Crocker, P.R. & Paulson, J.C. Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J. Biol. Chem. 278, 31007–31019 (2003).

    Article  CAS  Google Scholar 

  13. Collins, B.E. et al. High-affinity ligand probes of CD22 overcome the threshold set by cis ligands to allow for binding, endocytosis, and killing of B cells. J. Immunol. 177, 2994–3003 (2006).

    Article  CAS  Google Scholar 

  14. Yamaji, T., Teranishi, T., Alphey, M.S., Crocker, P.R. & Hashimoto, Y. A small region of the natural killer cell receptor, Siglec-7, is responsible for its preferred binding to alpha 2,8-disialyl and branched alpha 2,6-sialyl residues. A comparison with Siglec-9. J. Biol. Chem. 277, 6324–6332 (2002).

    Article  CAS  Google Scholar 

  15. Mehta, P., Cummings, R.D. & McEver, R.P. Affinity and kinetic analysis of P-selectin binding to P-selectin glycoprotein ligand-1. J. Biol. Chem. 273, 32506–32513 (1998).

    Article  CAS  Google Scholar 

  16. Adler, P. et al. High affinity binding of the Entamoeba histolytica lectin to polyvalent N-acetylgalactosaminides. J. Biol. Chem. 270, 5164–5171 (1995).

    Article  CAS  Google Scholar 

  17. Tateno, H. & Goldstein, I.J. Partial identification of carbohydrate-binding sites of a Galalpha1,3Galbeta1,4GlcNAc-specific lectin from the mushroom Marasmius oreades by site-directed mutagenesis. Arch. Biochem. Biophys. 427, 101–109 (2004).

    Article  CAS  Google Scholar 

  18. Winter, H.C., Oscarson, S., Slattegard, R., Tian, M. & Goldstein, I.J. Banana lectin is unique in its recognition of the reducing unit of 3-O-beta-glucosyl/mannosyl disaccharides: a calorimetric study. Glycobiology 15, 1043–1050 (2005).

    Article  CAS  Google Scholar 

  19. Dam, T.K. et al. Binding studies of alpha-GaLNAc specific lectins to the alpha-GaLNAc (Tn-antigen) form of porcine submaxillary mucin and its smaller fragments. J. Biol. Chem. (2007)(Epub ahead of print).

  20. Dam, T.K. & Brewer, C.F. Multivalent protein-carbohydrate interactions: isothermal titration microcalorimetry studies. Methods Enzymol. 379, 107–128 (2004).

    Article  CAS  Google Scholar 

  21. Brewer, C.F. Thermodynamic binding studies of galectin-1, -3 and -7. Glycoconj. J. 19, 459–465 (2004).

    Article  Google Scholar 

  22. Tateno, H., Winter, H.C. & Goldstein, I.J. Cloning, expression in Escherichia coli and characterization of the recombinant Neu5Acalpha2,6Galbeta1,4GlcNAc-specific high-affinity lectin and its mutants from the mushroom. Polyporus squamosus. Biochem. J. 382, 667–675 (2004).

    Article  CAS  Google Scholar 

  23. Powell, L.D., Jain, R.K., Matta, K.L., Sabesan, S. & : Varki, A. Characterization of sialyloligosaccharide binding by recombinant soluble and native cell-associated CD22. Evidence for a minimal structural recognition motif and the potential importance of multisite binding. J. Biol. Chem. 270, 7523–7532 (1995).

    Article  CAS  Google Scholar 

  24. Shimura, K. & Kasai, K. Analysis of lectin-carbohydrate interactions by capillary affinophoresis. Methods Enzymol. 362, 398–417 (2003).

    Article  CAS  Google Scholar 

  25. Shimura, K., Arata, Y., Uchiyama, N., Hirabayashi, J. & Kasai, K. Determination of the affinity constants of recombinant human galectin-1 and -3 for simple saccharides by capillary affinophoresis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 768, 199–210 (2002).

    Article  CAS  Google Scholar 

  26. Mo, H., Winter, H.C. & Goldstein, I.J. Purification and characterization of a Neu5Acalpha2-6Galbeta1-4Glc/GlcNAc-specific lectin from the fruiting body of the polypore mushroom Polyporus squamosus. J. Biol. Chem. 275, 10623–10629 (2000).

    Article  CAS  Google Scholar 

  27. Tateno, H., Winter, H.C., Petryniak, J. & Goldstein, I.J. Purification, characterization, molecular cloning, and expression of novel members of jacalin-related lectins from rhizomes of the true fern Phlebodium aureum (L) J. Smith (Polypodiaceae). J. Biol. Chem. 278, 10891–10899 (2003).

    Article  CAS  Google Scholar 

  28. Goldstein, I.J. et al. Carbohydrate binding properties of banana (Musa acuminata) lectin II. Binding of laminaribiose oligosaccharides and beta-glucans containing beta1,6-glucosyl end groups. Eur. J. Biochem. 268, 2616–2619 (2001).

    Article  CAS  Google Scholar 

  29. Mo, H. et al. Carbohydrate binding properties of banana (Musa acuminata) lectin I. Novel recognition of internal alpha1,3-linked glucosyl residues. Eur. J. Biochem. 268, 2609–2615 (2001).

    Article  CAS  Google Scholar 

  30. Ohyama, Y., Kasai, K., Nomoto, H. & Inoue, Y. Frontal affinity chromatography of ovalbumin glycoasparagines on a concanavalin A-sepharose column. A quantitative study of the binding specificity of the lectin. J. Biol. Chem. 260, 6882–6887 (1985).

    CAS  PubMed  Google Scholar 

  31. Oda, Y., Kasai, K. & Ishii, S. Studies on the specific interaction of concanavalin A and saccharides by affinity chromatography. Application of quantitative affinity chromatography to a multivalent system. J. Biochem. (Tokyo) 89, 285–296 (1981).

    Article  CAS  Google Scholar 

  32. Kasai, K. & Ishii, S. Quantitative analysis of affinity chromatography of trypsin. A new technique for investigation of protein-ligand interaction. J. Biochem. (Tokyo) 77, 261–264 (1975).

    CAS  Google Scholar 

  33. Hirabayashi, J., Arata, Y. & Kasai, K. Frontal affinity chromatography as a tool for elucidation of sugar recognition properties of lectins. Methods Enzymol. 362, 353–368 (2003).

    Article  CAS  Google Scholar 

  34. Hirabayashi, J., Arata, Y. & Kasai, K. Reinforcement of frontal affinity chromatography for effective analysis of lectin-oligosaccharide interactions. J. Chromatogr. A 890, 261–271 (2000).

    Article  CAS  Google Scholar 

  35. Arata, Y., Hirabayashi, J. & Kasai, K.I. Application of reinforced frontal affinity chromatography and advanced processing procedure to the study of the binding property of a Caenorhabditis elegans galectin. J. Chromatogr. A 905, 337–343 (2001).

    Article  CAS  Google Scholar 

  36. Nakamura, S., Yagi, F., Totani, K., Ito, Y. & Hirabayashi, J. Comparative analysis of carbohydrate-binding properties of two tandem repeat-type Jacalin-related lectins, Castanea crenata agglutinin and Cycas revoluta leaf lectin. FEBS J. 272, 2784–2799 (2005).

    Article  CAS  Google Scholar 

  37. Nakamura-Tsuruta, S. et al. Comparative analysis by frontal affinity chromatography of oligosaccharide specificity of GlcNAc-binding lectins, Griffonia simplicifolia lectin-II (GSL-II) and Boletopsis leucomelas lectin (BLL). J. Biochem. (Tokyo) 140, 285–291 (2006).

    Article  CAS  Google Scholar 

  38. Arata, Y., Hirabayashi, J. & : Kasai, K. The two lectin domains of the tandem-repeat 32-kDa galectin of the nematode Caenorhabditis elegans have different binding properties. Studies with recombinant protein. J. Biochem. (Tokyo) 121, 1002–1009 (1997).

    Article  CAS  Google Scholar 

  39. Dam, T.K., Roy, R., Page, D. & Brewer, C.F. Negative cooperativity associated with binding of multivalent carbohydrates to lectins. Thermodynamic analysis of the 'multivalency effect'. Biochemistry 41, 1351–1358 (2002).

    Article  CAS  Google Scholar 

  40. Dam, T.K., Roy, R., Page, D. & Brewer, C.F. Thermodynamic binding parameters of individual epitopes of multivalent carbohydrates to concanavalin a as determined by 'reverse' isothermal titration microcalorimetry. Biochemistry 41, 1359–1363 (2002).

    Article  CAS  Google Scholar 

  41. Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y. & Tomiya, N. Three-dimensional elution mapping of pyridylaminated N-linked neutral and sialyl oligosaccharides. Anal. Biochem. 226, 139–146 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Junko Kominami (J-Oil Mills), Noboru Uchiyama, Yusuke Osaka (Shimadzu Co.) and all current and past members of the Hirabayashi Lab for their various contributions to the development and establishment of the FAC protocol; J-Oil Mills for providing GSL-II. This work was supported by New Energy and Industrial Technology Development Organization (NEDO) in Japan under the Ministry of Economy, Trade, and Industry (METI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hirabayashi.

Supplementary information

Supplementary Data

Screening and analysis of GSL-II (PDF 3789 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tateno, H., Nakamura-Tsuruta, S. & Hirabayashi, J. Frontal affinity chromatography: sugar–protein interactions. Nat Protoc 2, 2529–2537 (2007). https://doi.org/10.1038/nprot.2007.357

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.357

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing