Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging

Abstract

A detailed protocol for the synthesis of core/shell semiconductor nanocrystal, their encapsulation into phospholipid micelles, their purification and their coupling to a controlled number of small molecules is given. The protocol for the core/shell quantum dot (QD) CdSe/CdZnS synthesis has been specifically designed with two constraints in mind: green and reproducible core/shell QD synthesis with thick shell structure and QDs that can easily be encapsulated in poly(ethylene glycol)-phospholipid micelles with one QD per micelle. We present two procedures for the QD purification that are suitable for the use of QD micelles for in vivo imaging: ultracentrifugation and size-exclusion chromatography. We also discuss the different coupling chemistry for covalently linking a controlled number of molecules to the QD micelles. The total time durations for the different protocols are as follows: QD synthesis: 6 h; encapsulation: 15 min; purification: 1–4 h; coupling: reaction dependent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5: Schematics of fluorescein–QD conjugation protocol.
Figure 6
Figure 7: Evolution of photoluminescence excitation spectra during shell-growth.
Figure 8
Figure 9
Figure 10: Absorption and emission spectra of QD, fluorescein and QD–fluorescein adducts.

Similar content being viewed by others

References

  1. Efros, A.L. & Rosen, M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 30, 475–521 (2000).

    Article  CAS  Google Scholar 

  2. Murray, C.B., Kagan, C.R. & Bawendi, M.G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  CAS  Google Scholar 

  3. Medintz, I.L., Uyeda, H.T., Goldman, E.R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    Article  CAS  Google Scholar 

  4. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  Google Scholar 

  5. Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762 (2002).

    Article  CAS  Google Scholar 

  6. Murray, C.B., Norris, D.J. & Bawendi, M.G. Synthesis and characterization of nearly monodisperse Cde (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  7. Hines, M.A. & GuyotSionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996).

    Article  CAS  Google Scholar 

  8. Qu, L.H., Peng, Z.A. & Peng, X.G. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1, 333–337 (2001).

    Article  CAS  Google Scholar 

  9. Yu, W.W., Wang, Y.A. & Peng, X.G. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals. Chem. Mater. 15, 4300–4308 (2003).

    Article  CAS  Google Scholar 

  10. Talapin, D.V., Rogach, A.L., Kornowski, A., Haase, M. & Weller, H. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine–trioctylphosphine oxide–trioctylphospine mixture. Nano Lett. 1, 207–211 (2001).

    Article  CAS  Google Scholar 

  11. Yang, Y.A., Wu, H.M., Williams, K.R. & Cao, Y.C. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew. Chem. Int. Ed. Engl. 44, 6712–6715 (2005).

    Article  CAS  Google Scholar 

  12. Li, J.J. et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567–12575 (2003).

    Article  CAS  Google Scholar 

  13. Xie, R.G., Kolb, U., Li, J.X., Basche, T. & Mews, A. Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J. Am. Chem. Soc. 127, 7480–7488 (2005).

    Article  CAS  Google Scholar 

  14. Dabbousi, B.O. et al. (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997).

    Article  CAS  Google Scholar 

  15. Yu, Z.H., Guo, L., Du, H., Krauss, T. & Silcox, J. Shell distribution on colloidal CdSe/ZnS quantum dots. Nano Lett. 5, 565–570 (2005).

    Article  CAS  Google Scholar 

  16. Jun, S., Jang, E. & Lim, J.E. Synthesis of multi-shell nanocrystals by a single step coating process. Nanotechnology 17, 3892–3896 (2006).

    Article  CAS  Google Scholar 

  17. Talapin, D.V. et al. Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett. 3, 1677–1681 (2003).

    Article  CAS  Google Scholar 

  18. Corbridge, D.E.C. The phosphorus world Chemistry, Biochemistry and Technology. CD-Rom (2005).

  19. Liu, H.T., Owen, J.S. & Alivisatos, A.P. Mechanistic study of precursor evolution in colloidal group II–VI semiconductor nanocrystal synthesis. J. Am. Chem. Soc. 129, 305–312 (2007).

    Article  CAS  Google Scholar 

  20. Yang, Y.A., Chen, O., Angerhofer, A. & Cao, Y.C. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. J. Am. Chem. Soc. 128, 12428–12429 (2006).

    Article  CAS  Google Scholar 

  21. Talapin, D.V. et al. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J. Phys. Chem. B 108, 18826–18831 (2004).

    Article  CAS  Google Scholar 

  22. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  23. Jaiswal, J.K., Mattoussi, H., Mauro, J.M. & Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51 (2003).

    Article  CAS  Google Scholar 

  24. Harris, J.M. Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications (Plenum Press, New York and London, 1992).

    Book  Google Scholar 

  25. Doose, S., Tsay, J.M., Pinaud, F. & Weiss, S. Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy. Anal. Chem. 77, 2235–2242 (2005).

    Article  CAS  Google Scholar 

  26. Pons, T., Uyeda, H.T., Medintz, I.L. & Mattoussi, H. Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. J. Phys. Chem. B 110, 20308–20316 (2006).

    Article  CAS  Google Scholar 

  27. Hermanson, G.T. Bioconjugate Techniques (Academic Press, San Diego, California, 1996).

    Google Scholar 

  28. Leatherdale, C.A., Woo, W.K., Mikulec, F.V. & Bawendi, M.G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106, 7619–7622 (2002).

    Article  CAS  Google Scholar 

  29. Johnsson, M., Hansson, P. & Edwards, K. Spherical micelles and other self-assembled structures in dilute aqueous mixtures of poly(ethylene glycol) lipids. J. Phys. Chem. B 105, 8420–8430 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Dubertret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carion, O., Mahler, B., Pons, T. et al. Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging. Nat Protoc 2, 2383–2390 (2007). https://doi.org/10.1038/nprot.2007.351

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.351

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing