Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantitative proteomic approach to study subcellular localization of membrane proteins

Abstract

As proteins within cells are spatially organized according to their role, knowledge about protein localization gives insight into protein function. Here, we describe the LOPIT technique (localization of organelle proteins by isotope tagging) developed for the simultaneous and confident determination of the steady-state distribution of hundreds of integral membrane proteins within organelles. The technique uses a partial membrane fractionation strategy in conjunction with quantitative proteomics. Localization of proteins is achieved by measuring their distribution pattern across the density gradient using amine-reactive isotope tagging and comparing these patterns with those of known organelle residents. LOPIT relies on the assumption that proteins belonging to the same organelle will co-fractionate. Multivariate statistical tools are then used to group proteins according to the similarities in their distributions, and hence localization without complete centrifugal separation is achieved. The protocol requires approximately 3 weeks to complete and can be applied in a high-throughput manner to material from many varied sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General principles of the LOPIT approach.
Figure 2: Structure of the iTRAQ reagent.
Figure 3: Overview of the cell fractionation procedure.
Figure 4: Western blotting analysis.
Figure 5: Peptide fragmentation by CID.
Figure 6: PCA analysis showing clustering of proteins according to their distribution down the gradient.

Similar content being viewed by others

References

  1. Millar, A.H. Location, location, location: surveying the intracellular real estate through proteomics in plants. Funct. Plant Biol. 31, 20 (2004).

    Article  Google Scholar 

  2. Dupree, P. & Sherrier, D.J. The plant Golgi apparatus. Biochem. Biophys. Acta Mol. Cell Res. 1404, 259–270 (1998).

    Article  CAS  Google Scholar 

  3. Galili, G., Sengupta-Gopalan, C. & Ceriotti, A. The endoplasmic reticulum of plant cells and its role in protein maturation and biogenesis of oil bodies. Plant Mol. Biol. 38, 1–29 (1998).

    Article  CAS  Google Scholar 

  4. Eisenhaber, F. & Bork, P. Wanted: subcellular localization of proteins based on sequence. Trends Cell Biol. 8, 169–170 (1998).

    Article  CAS  Google Scholar 

  5. Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–35 (1999).

    Article  CAS  Google Scholar 

  6. Corse, E. & Machamer, C.E. The cytoplasmic tail of infectious bronchitis virus E protein directs Golgi targeting. J. Virol. 76, 1273–1284 (2002).

    Article  CAS  Google Scholar 

  7. Davis, T.N. Protein localization in proteomics. Curr. Opin. Chem. Biol. 8, 49–53 (2004).

    Article  CAS  Google Scholar 

  8. Lippincott-Schwartz, J. & Patterson, G.H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

    Article  CAS  Google Scholar 

  9. Mura, C.V., Becker, M.I., Orellana, A. & Wolff, D. Immunopurification of Golgi vesicles by magnetic sorting. Immunol. Methods 260, 263–71 (2002).

    Article  CAS  Google Scholar 

  10. Taylor, S.W. et al. Characterization of the human heart mitochondrial proteome. Nat. Biotechnol. 21, 281–286 (2003).

    Article  CAS  Google Scholar 

  11. Friso, G. et al. In depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16, 478–499 (2004).

    Article  CAS  Google Scholar 

  12. Wu, C.C. et al. Organellar proteomics reveals Golgi arginine dimethylation. Mol. Biol. Cell 15, 2907–2919 (2004).

    Article  CAS  Google Scholar 

  13. Jurgens, G. Membrane trafficking in plants. Annu. Rev. Cell Dev. Biol. 20, 481–504 (2004).

    Article  Google Scholar 

  14. Dunkley, T.P., Watson, R., Griffin, J.L., Dupree, P. & Lilley, K.S. Localization of organelle proteins by isotope tagging (LOPIT). Mol. Cell Proteomics 3, 1128–1134 (2004).

    Article  CAS  Google Scholar 

  15. Dunkley, T.P. et al. Mapping the Arabidopsis organelle proteome. Proc. Natl. Acad. Sci. USA 103, 6518–6523 (2006).

    Article  CAS  Google Scholar 

  16. Ross, P.L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics 3, 1154–1169 (2004).

    Article  CAS  Google Scholar 

  17. Andersen, J.S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003).

    Article  CAS  Google Scholar 

  18. Foster, L. et al. A mammalian organelle map by protein correlation profiling. Cell 125, 187–199 (2006).

    Article  CAS  Google Scholar 

  19. Tan, D.J. & Martinez-Arias, A. High-throughput localization of organelle proteins by mass spectrometry: a quantum leap for cell biology. BioEssays 28, 780–784 (2006).

    Article  CAS  Google Scholar 

  20. Prime, T.A., Sherrier, D.J., Mahon, P., Packman, L.C. & Dupree, P. A proteomic analysis of organelles from Arabidopsis thaliana. Electrophoresis 21, 3488–3499 (2000).

    Article  CAS  Google Scholar 

  21. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-encoded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

    Article  CAS  Google Scholar 

  22. Berg, M., Parbel, A., Pettersen, H., Feny, D. & Björkesten, L. Reproducibility of LC–MS-based protein identification. J. Exp. Bot. 57, 1509–1514 (2006).

    Article  CAS  Google Scholar 

  23. Boehm, A.M., Galvin, R.P. & Sickmann, A. Extractor for ESI quadrupole TOF tandem MS data enabled for high throughput batch processing. BMC Bioinformatics 5, 162 (2004).

    Article  Google Scholar 

  24. Shadforth, I.P., Xu, W., Crowther, D. & Bessant, C. GAPP: A fully automated software for the confident identification of human peptides from tandem mass spectra. J. Proteome Res. 5, 2849–2852 (2006).

    Article  CAS  Google Scholar 

  25. Shadforth, I.P., Dunkley, T.P., Lilley, K.S. & Bessant, C. i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics 6, 145 (2005).

    Article  Google Scholar 

  26. Graham, J., Ford, T. & Rickwood, D. The preparation of subcellular organelles from mouse-liver in self-generated gradients of iodixanol. Anal. Biochem. 220, 367–373 (1994).

    Article  CAS  Google Scholar 

  27. Fujiki, Y., Hubbard, A.L., Fowler, S. & Lazarow, P.B. Isolation of intracellular membranes by means of sodium-carbonate treatment. J. Cell Biol. 93, 97–102 (1982).

    Article  CAS  Google Scholar 

  28. Shadforth, I.P., Dunkley, T.P., Lilley, K., Crowther, D. & Bessant, C. Confident protein identification using the average peptide score method coupled with search-specific, ab initio, thresholds. Rapid Commun. Mass Spectrom. 19, 3363–3368 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn S Lilley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadowski, P., Dunkley, T., Shadforth, I. et al. Quantitative proteomic approach to study subcellular localization of membrane proteins. Nat Protoc 1, 1778–1789 (2006). https://doi.org/10.1038/nprot.2006.254

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.254

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing