Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Serial analysis of gene expression

Abstract

Serial analysis of gene expression (SAGE) is a method used to obtain comprehensive, unbiased and quantitative gene-expression profiles. Its major advantage over arrays is that it does not require a priori knowledge of the genes to be analyzed and reflects absolute mRNA levels. Since the original SAGE protocol was developed in a short-tag (10-bp) format, several modifications have been made to produce longer SAGE tags for more precise gene identification and to decrease the amount of starting material necessary. Several SAGE-like methods have also been developed for the genome-wide analysis of DNA copy-number changes and methylation patterns, chromatin structure and transcription factor targets. In this protocol, we describe the 17-bp longSAGE method for transcriptome profiling optimized for a small amount of starting material. The generation of such libraries can be completed in 7–10 d, whereas sequencing and data analysis require an additional 2–3 wk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic outline of the SAGE protocol.
Figure 2: Image of gel with ditag PCR products.
Figure 3: Image of gel of ditag fragments and linkers released by NlaIII digest.
Figure 4: Image of gel of ditag concatemer formation.

Similar content being viewed by others

References

  1. Velculescu, V.E., Zhang, L., Vogelstein, B. & Kinzler, K.W. Serial analysis of gene expression. Science 270, 484–487 (1995).

    CAS  Google Scholar 

  2. Shendure, J., Mitra, R.D., Varma, C. & Church, G.M. Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5, 335–344 (2004).

    CAS  Google Scholar 

  3. Ibrahim, A.F. et al. A comparative analysis of transcript abundance using SAGE and Affymetrix arrays. Funct. Integr. Genomics 5, 163–174 (2005).

    CAS  Google Scholar 

  4. Lu, J., Lal, A., Merriman, B., Nelson, S. & Riggins, G.A comparison of gene expression profiles produced by SAGE, long SAGE, and oligonucleotide chips. Genomics 84, 631–636 (2004).

    CAS  Google Scholar 

  5. van Ruissen, F. et al. Evaluation of the similarity of gene expression data estimated with SAGE and Affymetrix GeneChips. BMC Genomics 6, 91 (2005).

    PubMed Central  Google Scholar 

  6. Sun, M. et al. SAGE is far more sensitive than EST for detecting low-abundance transcripts. BMC Genomics 5, 1 (2004).

    PubMed Central  Google Scholar 

  7. Saha, S. et al. Using the transcriptome to annotate the genome. Nat. Biotechnol. 20, 508–512 (2002).

    CAS  PubMed Central  Google Scholar 

  8. Gowda, M., Jantasuriyarat, C., Dean, R.A. & Wang, G.L. Robust-LongSAGE (RL-SAGE): a substantially improved LongSAGE method for gene discovery and transcriptome analysis. Plant Physiol. 134, 890–897 (2004).

    CAS  PubMed Central  Google Scholar 

  9. Matsumura, H. et al. Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc. Natl. Acad. Sci. USA 100, 15718–15723 (2003).

    CAS  Google Scholar 

  10. Tengs, T. et al. Genomic representations using concatenates of Type IIB restriction endonuclease digestion fragments. Nucleic Acids Res. 32, e121 (2004).

    PubMed Central  Google Scholar 

  11. Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl. Acad. Sci. USA 100, 15776–15781 (2003).

    CAS  Google Scholar 

  12. Wei, C.L. et al. 5′ Long serial analysis of gene expression (LongSAGE) and 3′ LongSAGE for transcriptome characterization and genome annotation. Proc. Natl. Acad. Sci. USA 101, 11701–1176 (2004).

    CAS  Google Scholar 

  13. Hwang, B.J., Muller, H.M. & Sternberg, P.W. Genome annotation by high-throughput 5′ RNA end determination. Proc. Natl. Acad. Sci. USA 101, 1650–1655 (2004).

    CAS  Google Scholar 

  14. Ng, P. et al. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat. Methods 2, 105–111 (2005).

    CAS  Google Scholar 

  15. Virlon, B. et al. Serial microanalysis of renal transcriptomes. Proc. Natl. Acad. Sci. USA 96, 15286–15291 (1999).

    CAS  Google Scholar 

  16. Datson, N.A., van der Perk-de Jong, J., van den Berg, M.P., de Kloet, E.R. & Vreugdenhil, E. MicroSAGE: a modified procedure for serial analysis of gene expression in limited amounts of tissue. Nucleic Acids Res. 27, 1300–1307 (1999).

    CAS  PubMed Central  Google Scholar 

  17. Peters, D.G. et al. Comprehensive transcript analysis in small quantities of mRNA by SAGE-lite. Nucleic Acids Res. 27, e39 (1999).

    CAS  PubMed Central  Google Scholar 

  18. Neilson, L. et al. Molecular phenotype of the human oocyte by PCR-SAGE. Genomics 63, 13–24 (2000).

    CAS  Google Scholar 

  19. Ye, S.Q., Zhang, L.Q., Zheng, F., Virgil, D. & Kwiterovich, P.O. miniSAGE: gene expression profiling using serial analysis of gene expression from 1 microg total RNA. Anal. Biochem. 287, 144–152 (2000).

    CAS  Google Scholar 

  20. Vilain, C. & Vassart, G. Small amplified RNA-SAGE. Methods Mol. Biol. 258, 135–152 (2004).

    CAS  Google Scholar 

  21. Chen, J., Lee, S., Zhou, G. & Wang, S.M. High-throughput GLGI procedure for converting a large number of serial analysis of gene expression tag sequences into 3′ complementary DNAs. Genes Chromosomes Cancer 33, 252–261 (2002).

    CAS  Google Scholar 

  22. Hu, M. et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nat. Genet. 37, 899–905 (2005).

    CAS  Google Scholar 

  23. Cummins, J.M. et al. The colorectal microRNAome. Proc. Natl. Acad. Sci. USA 103, 3687–3692 (2006).

    CAS  Google Scholar 

  24. Brenner, S. et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol. 18, 630–634 (2000).

    CAS  Google Scholar 

  25. Roh, T.Y., Ngau, W.C., Cui, K., Landsman, D. & Zhao, K. High-resolution genome-wide mapping of histone modifications. Nat. Biotechnol. 22, 1013–1016 (2004).

    CAS  Google Scholar 

  26. Kim, J., Bhinge, A.A., Morgan, X.C. & Iyer, V.R. Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment. Nat. Methods 2, 47–53 (2005).

    CAS  PubMed Central  Google Scholar 

  27. Impey, S. et al. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119, 1041–1054 (2004).

    CAS  Google Scholar 

  28. Yao, J. et al. Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer Res. 66, 4065–4078 (2006).

    CAS  Google Scholar 

  29. Porter, D., Yao, J. & Polyak, K. SAGE and related approaches for cancer target identification. Drug Discov. Today 11, 110–118 (2006).

    CAS  Google Scholar 

  30. Harbers, M. & Carninci, P. Tag-based approaches for transcriptome research and genome annotation. Nat. Methods 2, 495–502 (2005).

    CAS  Google Scholar 

  31. Porter, D. et al. A neural survival factor is a candidate oncogene in breast cancer. Proc. Natl. Acad. Sci. USA 100, 10931–10936 (2003).

    CAS  Google Scholar 

  32. Ge, X., Jung, Y.C., Wu, Q., Kibbe, W.A. & Wang, S.M. Annotating nonspecific SAGE tags with microarray data. Genomics 87, 173–180 (2006).

    CAS  Google Scholar 

  33. Polyak, K., Xia, Y., Zweier, J.L., Kinzler, K.W. & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300–305 (1997).

    CAS  PubMed Central  Google Scholar 

  34. Chen, J.J., Lee, S., Zhou, G., Rowley, J.D. & Wang, S.M. Generation of longer cDNA fragments from SAGE tags for gene identification. Methods Mol. Biol. 221, 207–222 (2003).

    CAS  Google Scholar 

  35. Chen, J.J., Rowley, J.D. & Wang, S.M. Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc. Natl. Acad. Sci. USA 97, 349–353 (2000).

    CAS  Google Scholar 

  36. Menssen, A. & Hermeking, H. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc. Natl. Acad. Sci. USA 99, 6274–6279 (2002).

    CAS  Google Scholar 

  37. dos Santos, M.L., Palanch, C.G., Salaorni, S., Da Silva, W.A. & Nagai, M.A. Transcriptome characterization of human mammary cell lines expressing different levels of ERBB2 by serial analysis of gene expression. Int. J. Oncol. 28, 1441–1461 (2006).

    Google Scholar 

  38. Abba, M.C. et al. Gene expression signature of estrogen receptor alpha status in breast cancer. BMC Genomics 6, 37 (2005).

    PubMed Central  Google Scholar 

  39. Charpentier, A.H. et al. Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res. 60, 5977–5983 (2000).

    CAS  Google Scholar 

  40. Seth, P., Krop, I., Porter, D. & Polyak, K. Novel estrogen and tamoxifen induced genes identified by SAGE (Serial Analysis of Gene Expression). Oncogene 21, 836–843 (2002).

    CAS  Google Scholar 

  41. Seth, P. et al. Cellular and molecular targets of estrogen in normal human breast tissue. Cancer Res. 62, 4540–4544 (2002).

    CAS  Google Scholar 

  42. Lee, S. et al. Gene expression profiles in acute myeloid leukemia with common translocations using SAGE. Proc. Natl. Acad. Sci. USA 103, 1030–1035 (2006).

    CAS  Google Scholar 

  43. Weeraratna, A.T. et al. Generation and analysis of melanoma SAGE libraries: SAGE advice on the melanoma transcriptome. Oncogene 23, 2264–2274 (2004).

    CAS  Google Scholar 

  44. Oue, N. et al. Gene expression profile of gastric carcinoma: identification of genes and tags potentially involved in invasion, metastasis, and carcinogenesis by serial analysis of gene expression. Cancer Res. 64, 2397–23405 (2004).

    CAS  Google Scholar 

  45. Parle-McDermott, A., McWilliam, P., Tighe, O., Dunican, D. & Croke, D.T. Serial analysis of gene expression identifies putative metastasis-associated transcripts in colon tumour cell lines. Br. J. Cancer 83, 725–728 (2000).

    CAS  PubMed Central  Google Scholar 

  46. Untergasser, G., Koch, H.B., Menssen, A. & Hermeking, H. Characterization of epithelial senescence by serial analysis of gene expression: identification of genes potentially involved in prostate cancer. Cancer Res. 62, 6255–6262 (2002).

    CAS  Google Scholar 

  47. Abba, M.C. et al. Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression. Breast Cancer Res. 6, R499–R4513 (2004).

    CAS  PubMed Central  Google Scholar 

  48. Porter, D.A. et al. A SAGE (serial analysis of gene expression) view of breast tumor progression. Cancer Res. 61, 5697–5702 (2001).

    CAS  Google Scholar 

  49. Allinen, M. et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6, 17–32 (2004).

    CAS  Google Scholar 

  50. Parker, B.S. et al. Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res. 64, 7857–7866 (2004).

    CAS  Google Scholar 

  51. St Croix, B. et al. Genes expressed in human tumor endothelium. Science 289, 1197–1202 (2000).

    CAS  Google Scholar 

  52. Sherman-Baust, C.A. et al. Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell 3, 377–386 (2003).

    CAS  Google Scholar 

  53. Stein, W.D., Litman, T., Fojo, T. & Bates, S.E. A Serial Analysis of Gene Expression (SAGE) database analysis of chemosensitivity: comparing solid tumors with cell lines and comparing solid tumors from different tissue origins. Cancer Res. 64, 2805–2816 (2004).

    CAS  Google Scholar 

  54. Boheler, K.R. & Tarasov, K.V. SAGE analysis to identify embryonic stem cell-predominant transcripts. Methods Mol. Biol. 329, 195–221 (2006).

    CAS  Google Scholar 

  55. Bourdet, A. et al. A SAGE approach to identifying novel trans-acting factors involved in the X inactivation process. Cytogenet. Genome Res. 113, 325–335 (2006).

    CAS  Google Scholar 

  56. Sun, T. et al. Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science 308, 1794–1798 (2005).

    CAS  PubMed Central  Google Scholar 

  57. Velculescu, V.E. et al. Characterization of the yeast transcriptome. Cell 88, 243–251 (1997).

    CAS  PubMed Central  Google Scholar 

  58. Ma, X.H. et al. Serial analysis of gene expression in mouse uterus at the implantation site. J. Biol. Chem. 281, 9351–9360 (2006).

    CAS  Google Scholar 

  59. Zhang, T.J., Hoffman, B.G., Ruiz de Algara, T. & Helgason, C.D. SAGE reveals expression of Wnt signalling pathway members during mouse prostate development. Gene Expr. Patterns 6, 310–324 (2006).

    CAS  Google Scholar 

  60. Wu, S.M. et al. Analysis of mouse germ-cell transcriptome at different stages of spermatogenesis by SAGE: biological significance. Genomics 84, 971–981 (2004).

    CAS  Google Scholar 

  61. Friedland, D.R., Popper, P., Eernisse, R. & Cioffi, J.A. Differentially expressed genes in the rat cochlear nucleus. Neuroscience 142, 753–768 (2006).

    CAS  Google Scholar 

  62. Ouchi, Y., Kubota, Y. & Ito, C. Serial analysis of gene expression in methamphetamine- and phencyclidine-treated rodent cerebral cortices: are there common mechanisms? Ann. NY Acad. Sci. 1025, 57–61 (2004).

    CAS  Google Scholar 

  63. Blomberg, L.A. et al. Transcriptome profiling of the tubular porcine conceptus identifies the differential regulation of growth and developmentally associated genes. Mol. Reprod. Dev. 73, 1491–1502 (2006).

    CAS  Google Scholar 

  64. Blomberg, L.A. et al. Serial analysis of gene expression during elongation of the peri-implantation porcine trophectoderm (conceptus). Physiol. Genomics 20, 188–194 (2005).

    CAS  Google Scholar 

  65. Neill, J.D., Ridpath, J.F. & Liebler-Tenorio, E. Global gene expression profiling of Bovine immature B cells using serial analysis of gene expression. Anim. Biotechnol. 17, 21–31 (2006).

    CAS  Google Scholar 

  66. Harhay, G.P. et al. Characterization of 954 bovine full-CDS cDNA sequences. BMC Genomics 6, 166 (2005).

    PubMed Central  Google Scholar 

  67. Maillard, J.C. et al. Use of the Serial Analysis of Gene Expression (SAGE) method in veterinary research: A concrete application in the study of the bovine trypanotolerance genetic control. Ann. NY Acad. Sci. 1026, 171–182 (2004).

    CAS  Google Scholar 

  68. Wahl, M.B. et al. Evaluation of the chicken transcriptome by SAGE of B cells and the DT40 cell line. BMC Genomics 5, 98 (2004).

    PubMed Central  Google Scholar 

  69. Damiola, F., Keime, C., Gonin-Giraud, S., Dazy, S. & Gandrillon, O. Global transcription analysis of immature avian erythrocytic progenitors: from self-renewal to differentiation. Oncogene 23, 7628–7643 (2004).

    CAS  Google Scholar 

  70. Ekman, D.R., Lorenz, W.W., Przybyla, A.E., Wolfe, N.L. & Dean, J.F. SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. Plant Physiol. 133, 1397–1406 (2003).

    CAS  PubMed Central  Google Scholar 

  71. Jung, S.H., Lee, J.Y. & Lee, D.H. Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant Mol. Biol. 52, 553–567 (2003).

    CAS  Google Scholar 

  72. Robinson, S.J., Cram, D.J., Lewis, C.T. & Parkin, I.A. Maximizing the efficacy of SAGE analysis identifies novel transcripts in Arabidopsis. Plant Physiol. 136, 3223–3233 (2004).

    CAS  PubMed Central  Google Scholar 

  73. Lee, S. et al. Detecting novel low-abundant transcripts in Drosophila. RNA 11, 939–946 (2005).

    CAS  PubMed Central  Google Scholar 

  74. Munasinghe, A. et al. Serial analysis of gene expression (SAGE) in Plasmodium falciparum: application of the technique to A–T rich genomes. Mol. Biochem. Parasitol. 113, 23–34 (2001).

    CAS  Google Scholar 

  75. Patankar, S., Munasinghe, A., Shoaibi, A., Cummings, L.M. & Wirth, D.F. Serial analysis of gene expression in Plasmodium falciparum reveals the global expression profile of erythrocytic stages and the presence of anti-sense transcripts in the malarial parasite. Mol. Biol. Cell 12, 3114–3125 (2001).

    CAS  PubMed Central  Google Scholar 

  76. Jones, S.J. et al. Changes in gene expression associated with developmental arrest and longevity in Caenorhabditis elegans. Genome Res. 11, 1346–1352 (2001).

    CAS  Google Scholar 

  77. McKay, S.J. et al. Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harb. Symp. Quant. Biol. 68, 159–169 (2003).

    CAS  Google Scholar 

  78. Cai, L. et al. Clustering analysis of SAGE data using a Poisson approach. Genome Biol. 5, R51 (2004).

    PubMed Central  Google Scholar 

  79. Turpen, T.H. & Griffith, O.M. Rapid Isolation of RNA by a guanidinium thiocyanate/cesium chloride gradient method. BioTechniques 4, 11–15 (1986).

    CAS  Google Scholar 

  80. Chomczynski, P. & Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat. Protocols 1, 581–585 (2006).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kornelia Polyak.

Ethics declarations

Competing interests

MH and KP are inventors of a patent application submitted on the MSDK (Methylation Specific Digital Karyotyping) technology and DNA methylation markers identified with it. KP receives research support from and is a consultant to Novartis Pharmaceuticals Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, M., Polyak, K. Serial analysis of gene expression. Nat Protoc 1, 1743–1760 (2006). https://doi.org/10.1038/nprot.2006.269

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.269

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing