Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct

Abstract

Small fish are a popular laboratory model for studying gene expression and function by transgenesis. If, however, the transgenes are not readily detectable by visual inspection, a large number of embryos must be injected, raised and screened to identify positive founder fish. Here, we describe a strategy to efficiently generate and preselect transgenic lines harbouring any transgene of interest. Co-injection of a selectable reporter construct (e.g., GFP), together with the transgene of interest on a separate plasmid using the I-SceI meganuclease approach, results in co-distribution of the two plasmids. The quality of GFP expression within the F0 generation therefore reflects the quality of injection and allows efficient and reliable selection of founder fish that are also positive for the second transgene of interest. In our experience, a large fraction (up to 50%) of GFP-positive fish will also be transgenic for the second transgene, thus providing a rapid (within 3–4 months) and efficient way to establish transgenic lines for any gene of interest in medaka and zebrafish.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Injection setup.
Figure 3: 'The ideal needle': Micropipettes for injection into zebrafish or medaka embryos.
Figure 4: Open versus closed needles for medaka and zebrafish.
Figure 5: Schematic drawing of the agarose mold.
Figure 6: The little metal hook can be used to collect medaka embryos.
Figure 7
Figure 8: Overview of the procedure and crossing scheme.

Similar content being viewed by others

References

  1. Gaiano, N., Allende, M., Amsterdam, A., Kawakami, K. & Hopkins, N. Highly efficient germ-line transmission of proviral insertions in zebrafish. Proc. Natl. Acad. Sci. USA 93, 7777–7782 (1996).

    Article  CAS  Google Scholar 

  2. Lin, S. et al. Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science 265, 666–669 (1994).

    Article  CAS  Google Scholar 

  3. Linney, E., Hardison, N.L., Lonze, B.E., Lyons, S. & DiNapoli, L. Transgene expression in zebrafish: a comparison of retroviral-vector and DNA-injection approaches. Dev. Biol. 213, 201–216 (1999).

    Article  Google Scholar 

  4. Ellingsen, S. et al. Large-scale enhancer detection in the zebrafish genome. Development 132, 3799–3811 (2005).

    Article  CAS  Google Scholar 

  5. Grabher, C. et al. Transposon-mediated enhancer trapping in medaka. Gene 322, 57–66 (2003).

    Article  CAS  Google Scholar 

  6. Kawakami, K. et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev. Cell 7, 133–144 (2004).

    Article  CAS  Google Scholar 

  7. Inoue, K. et al. Electroporation as a new technique for producing transgenic fish. Cell Differ. Dev. 29, 123–128 (1990).

    Article  CAS  Google Scholar 

  8. Ono, H., Hirose, E., Miyazaki, K., Yamamoto, H. & Matsumoto, J. Transgenic medaka fish bearing the mouse tyrosinase gene: expression and transmission of the transgene following electroporation of the orange-colored variant. Pigment Cell Res. 10, 168–175 (1997).

    Article  CAS  Google Scholar 

  9. Tawk, M., Tuil, D., Torrente, Y., Vriz, S. & Paulin, D. High-efficiency gene transfer into adult fish: a new tool to study fin regeneration. Genesis 32, 27–31 (2002).

    Article  CAS  Google Scholar 

  10. Sussman, R. Direct DNA delivery into zebrafish embryos employing tissue culture techniques. Genesis 31, 1–5 (2001).

    Article  CAS  Google Scholar 

  11. Muller, F. et al. Introducing foreign genes into fish eggs with electroporated sperm as a carrier. Mol. Mar. Biol. Biotech. 1, 276–281 (1992).

    CAS  Google Scholar 

  12. Sin, F.Y. et al. Electroporation of salmon sperm for gene transfer: efficiency, reliability, and fate of transgene. Mol. Reprod. Dev. 56, 285–288 (2000).

    Article  CAS  Google Scholar 

  13. Zelenin, A.V. et al. The delivery of foreign genes into fertilized fish eggs using high-velocity microprojectiles. FEBS Lett. 287, 118–120 (1991).

    Article  CAS  Google Scholar 

  14. Yamauchi, M. et al. Introduction of a foreign gene into medakafish using the particle gun method. J. Exp. Zool. 287, 285–293 (2000).

    Article  CAS  Google Scholar 

  15. Hong, Y., Winkler, C. & Schartl, M. Production of medakafish chimeras from a stable embryonic stem cell line. Proc. Natl. Acad. Sci. USA 95, 3679–3684 (1998).

    Article  CAS  Google Scholar 

  16. Ma, C.G., Fan, L.C., Ganassin, R., Bols, N. & Collodi, P. Production of zebrafish germ-line chimeras from embryo cell cultures. Proc. Natl. Acad. Sci. USA 98, 2461–2466 (2001).

    Article  CAS  Google Scholar 

  17. Zhu, Z.Y. & Sun, Y.H. Embryonic and genetic manipulation in fish. Cell Res. 10, 17–27 (2000).

    Article  CAS  Google Scholar 

  18. Wakamatsu, Y. et al. Fertile and diploid nuclear transplants derived from embryonic cells of a small laboratory fish, medaka (Oryzias latipes). Proc. Natl. Acad. Sci. USA 98, 1071–1076 (2001).

    Article  CAS  Google Scholar 

  19. Lee, K.-Y., Huang, H., Ju, B., Yang, Z. & Lin, S. Cloned zebrafish by nuclear transfer from long-term-cultured cells. Natl. Biotechnol. 20, 795–799 (2002).

    Article  CAS  Google Scholar 

  20. Ozato, K. et al. Production of transgenic fish: introduction and expression of chicken delta-crystallin gene in medaka embryos. Cell Differ. 19, 237–244 (1986).

    Article  CAS  Google Scholar 

  21. Stuart, G.W., McMurray, J.V. & Westerfield, M. Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103, 403–412 (1988).

    CAS  PubMed  Google Scholar 

  22. Lin, S. Transgenic zebrafish. Methods Mol. Biol. 136, 375–383 (2000).

    CAS  PubMed  Google Scholar 

  23. Chou, C.Y., Horng, L.S. & Tsai, H.J. Uniform GFP-expression in transgenic medaka (Oryzias latipes) at the F0 generation. Transgenic Res. 10, 303–315 (2001).

    Article  CAS  Google Scholar 

  24. Thermes, V. et al. I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech. Dev. 118, 91–98 (2002).

    Article  CAS  Google Scholar 

  25. Grabher, C., Joly, J.S. & Wittbrodt, J. Highly efficient zebrafish transgenesis mediated by the meganuclease I-SceI. Methods Cell Biol. 77, 381–401 (2004).

    Article  CAS  Google Scholar 

  26. Terasaki, H. et al. Transgenic analysis of the medaka mesp-b enhancer in somitogenesis. Dev. Growth Differ. 48, 153–168 (2006).

    Article  CAS  Google Scholar 

  27. Deschet, K., Nakatani, Y. & Smith, W.C. Generation of Ci-Brachyury-GFP stable transgenic lines in the ascidian Ciona savignyi. Genesis 35, 248–259 (2003).

    Article  CAS  Google Scholar 

  28. Hosemann, K.E., Colosimo, P.F., Summers, B.R. & Kingsley, D.M. A simple and efficient microinjection protocol for making transgenic sticklebacks. Behaviour 141, 1345–1355 (2004).

    Article  Google Scholar 

  29. Ogino, H., McConnell, W.B. & Grainger, R.M. Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease. Mech. Dev. 123, 103–113 (2006).

    Article  CAS  Google Scholar 

  30. Pan, F.C., Chen, Y., Loeber, J., Henningfeld, K. & Pieler, T. I-SceI meganuclease-mediated transgenesis in Xenopus. Dev. Dyn. 235, 247–252 (2006).

    Article  Google Scholar 

  31. Jacquier, A. & Dujon, B. An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41, 383–394 (1985).

    Article  CAS  Google Scholar 

  32. Vallone, D., Gondi, S.B., Whitmore, D. & Foulkes, N.S. E-box function in a period gene repressed by light. Proc. Natl. Acad. Sci. USA 101, 4106–4111 (2004).

    Article  CAS  Google Scholar 

  33. Kaneko, M. & Cahill, G.M. Light-dependent development of circadian gene expression in transgenic zebrafish. PLoS Biol. 3, e34 (2005).

    Article  Google Scholar 

  34. Muller, F. et al. Activator effect of coinjected enhancers on the muscle-specific expression of promoters in zebrafish embryos. Mol. Reprod. Dev. 47, 404–412 (1997).

    Article  CAS  Google Scholar 

  35. Grabher, C. & Wittbrodt, J. Efficient activation of gene expression using a heat-shock inducible Gal4/Vp16-UAS system in medaka. BMC Biotechnol. 4, 26 (2004).

    Article  Google Scholar 

  36. Wittbrodt, J., Shima, A. & Schartl, M. Medaka – A model organism from the Far East. Nature Rev. Genet. 3, 53–64 (2002).

    Article  CAS  Google Scholar 

  37. Yamamoto, T. Medaka (Killifish), Biology and Strains (Keigaku Publishing Company, Tokyo, 1975).

    Google Scholar 

  38. Westerfield, M. The Zebrafish Book (The University of Oregon Press, Eugene, 1995).

    Google Scholar 

Download references

Acknowledgements

We thank Aldona Nowicka and Diana Hofmann for expert fish husbandry and Felix Loosli for critical input to the manuscript. This work was supported by a grant from the European Union (FP6 Strep: Plurigenes) to J.W.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicholas S. Foulkes or Joachim Wittbrodt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rembold, M., Lahiri, K., Foulkes, N. et al. Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat Protoc 1, 1133–1139 (2006). https://doi.org/10.1038/nprot.2006.165

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.165

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing