Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Cell tracking using a photoconvertible fluorescent protein

Abstract

The tracking of cell fate, shape and migration is an essential component in the study of the development of multicellular organisms. Here we report a protocol that uses the protein Kaede, which is fluorescent green after synthesis but can be photoconverted red by violet or UV light. We have used Kaede along with confocal laser scanning microscopy to track labeled cells in a pattern of interest in zebrafish embryos. This technique allows the visualization of cell movements and the tracing of neuronal shapes. We provide illustrative examples of expression by mRNA injection, mosaic expression by DNA injection, and the creation of permanent transgenic fish with the UAS-Gal4 system to visualize morphogenetic processes such as neurulation, placode formation and navigation of early commissural axons in the hindbrain. The procedure can be adapted to other photoconvertible and reversible fluorescent molecules, including KikGR and Dronpa; these molecules can be used in combination with two-photon confocal microscopy to specifically highlight cells buried in tissues. The total time needed to carry out the protocol involving transient expression of Kaede by injection of mRNA or DNA, photoconversion and imaging is 2–8 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Arranging eggs for microinjection.
Figure 2: Mounting embryos for photoconversion and observation.
Figure 3: Photoconversion in desired patterns.
Figure 4: Four-dimensional imaging of convergent-extension movement of neural plate and organogenesis derived from placodes in the zebrafish embryo.
Figure 5: Tracing neurons and other cell types using Kaede and KikGR combined with the Gal4-UAS system in either transient or permanent transgenic fish.
Figure 6: Tracking some of the earliest commissural axons navigating in the hindbrain in the cross between Tg(deltaD:Gal4) and Tg(UAS:Kaede), dorsal view.

Similar content being viewed by others

References

  1. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 12651–12656 (2002).

    Article  CAS  Google Scholar 

  2. Ando, R., Mizuno, H. & Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 1370–1373 (2004).

    Article  CAS  Google Scholar 

  3. Tsutsui, H., Karasawa, S., Shimizu, H., Nukina, N. & Miyawaki, A. Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep. 6, 233–238 (2005).

    Article  CAS  Google Scholar 

  4. Aramaki, S. & Hatta, K. Visualizing neurons one-by-one in vivo: Optical dissection and reconstruction of neural networks with reversible fluorescent proteins. Dev. Dyn. 235, 2192–2199 (2006).

    Article  CAS  Google Scholar 

  5. Ciruna, B., Jenny, A., Lee, D., Mlodzik, M. & Schier, A.F. Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature 439, 220–224 (2006).

    Article  CAS  Google Scholar 

  6. Turner, D.L. & Weintraub, H. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 8, 1434–1447 (1994).

    Article  CAS  Google Scholar 

  7. Sato, T., Takahoko, M. & Okamoto, H. HuC:Kaede, a useful tool to label neural morphologies in networks in vivo. Genesis 44, 136–142 (2006).

    Article  CAS  Google Scholar 

  8. Fischer, J.A., Giniger, E., Maniatis, T. & Ptashne, M. GAL4 activates transcription in Drosophila. Nature 332, 853–856 (1988).

    Article  CAS  Google Scholar 

  9. Scheer, N. & Campos-Ortega, J.A. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech. Dev. 80, 153–158 (1999).

    Article  CAS  Google Scholar 

  10. Köster, R.W. & Fraser, S.E. Tracing transgene expression in living zebrafish embryos. Dev. Biol. 233, 329–346 (2001).

    Article  Google Scholar 

  11. Scheer, N., Groth, A., Hans, S. & Campos-Ortega, J.A. An instructive function for Notch in promoting gliogenesis in the zebrafish retina. Development 128, 1099–1107 (2001).

    CAS  PubMed  Google Scholar 

  12. Halloran, M.C. et al. Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127, 1953–1960 (2000).

    CAS  PubMed  Google Scholar 

  13. Girdham, C.H. & O'Farrell, P.H. The use of photoactivatable reagents for the study of cell lineage in Drosophila embryogenesis. Methods Cell Biol. 44, 533–543 (1994).

    Article  CAS  Google Scholar 

  14. Scheer, N., Riedl, I., Warren, J.T., Kuwada, J.Y. & Campos-Ortega, J.A. A quantitative analysis of the kinetics of Gal4 activator and effector gene expression in the zebrafish. Mech. Dev. 112, 9–14 (2002).

    Article  CAS  Google Scholar 

  15. Cooper, M.S., D'Amico, L.A. & Henry, C.A. Confocal microscopic analysis of morphogenetic movements. Methods Cell Biol. 59, 179–204 (1999).

    Article  CAS  Google Scholar 

  16. Westerfield, M. The Zebrafish Book: a Guide for the Laboratory Use of Zebrafish (Danio rerio) 4th edn. (Univ. of Oregon Press, Eugene, Oregon, 2000).

    Google Scholar 

  17. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  Google Scholar 

  18. Streisinger, G., Coale, F., Taggart, C., Walker, C. & Grunwald, D.J. Clonal origins of cells in the pigmented retina of the zebrafish eye. Dev. Biol. 131, 60–69 (1989).

    Article  CAS  Google Scholar 

  19. Nüsslein-Volhard, C. & Dahm, R. Zebrafish. Practical Approach Series No. 261 (Oxford University Press, Oxford, 2002).

    Google Scholar 

  20. Park, H.C. et al. Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev. Biol. 227, 279–293 (2000).

    Article  CAS  Google Scholar 

  21. Higashijima, S., Masino, M.A., Mandel, G. & Fetcho, J.R. Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J. Neurophysiol. 90, 3986–3997 (2003).

    Article  Google Scholar 

  22. Kawakami, K., Shima, A. & Kawakami, N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc. Natl. Acad. Sci. USA 97, 11403–11408 (2000).

    Article  CAS  Google Scholar 

  23. Kawakami, K. et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev. Cell 7, 133–144 (2004).

    Article  CAS  Google Scholar 

  24. Gilbert, S. Developmental Biology 8th edn. (Sinauer Associates, Sunderland, Massachusetts, 2006).

    Google Scholar 

Download references

Acknowledgements

We thank S. Aizawa for support; S. Hayashi for encouragement; S. Aramaki, H. Togashi, S. Yonemura, M. Hibi and K. Agata for help; M. Royle for comments and J. Clarke for encouraging us to publish this protocol. pKaede1 and pKikGR3 were kindly provided by A. Miyawaki; pEF:Gal4VP16, pUlyn and pEF:Gal4VP16-UlynU2B17 by R. Köster and S. Fraser; pDeltaD:Gal4 (ref. 11) by N. Sheer and J. Campos-Ortega; the HuC promoter20,21 by S. Higashijima; the HSP promoter12 by W. Shoji; vectors for T2 transposon–mediated gene transfer22,23 by K. Kawakami and Tg(deltaD:Gal4)11 and Tg(hsp:Gal4)14 by the Zebrafish International Resource Center. K.H. received grants-in-aid for Scientific Research from The Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Hatta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatta, K., Tsujii, H. & Omura, T. Cell tracking using a photoconvertible fluorescent protein. Nat Protoc 1, 960–967 (2006). https://doi.org/10.1038/nprot.2006.96

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.96

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing