Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local thermometry of neutral modes on the quantum Hall edge

Abstract

Electrons in two dimensions and strong magnetic fields can form an insulating two-dimensional system with conducting one-dimensional channels along the edge. Electron interactions in these edges can lead to independent transport of charge and heat, even in opposite directions. Here, we heat the outer edge of such a quantum Hall system using a quantum point contact. By placing quantum dots upstream and downstream from the heater, we measure both the chemical potential and temperature of that edge to study charge and heat transport, respectively. We find that charge is transported exclusively downstream, but heat can be transported upstream when the edge has additional structure related to fractional quantum Hall (FQH) physics. Surprisingly, this can occur even when the bulk is in an integer quantum Hall state and the edge contains no signatures of FQH charge transport. We also find an unexpected bulk contribution to heat transport at ν = 1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurement overview.
Figure 2: Local charge transport.
Figure 3: Local edge temperature versus QPC power dissipation at different magnetic fields.
Figure 4: Possible edge structures at different magnetic fields.
Figure 5: Modified device to study heat transport along a sharper edge.
Figure 6: Upstream thermometry to identify FQH structure in the ν = 1 edge.

Similar content being viewed by others

References

  1. Girvin, S. & Prange, R. The Quantum Hall Effect (Springer, 1987).

    Google Scholar 

  2. Stern, A. & Halperin, B. I. Proposed experiments to probe the non-Abelian ν = 5/2 quantum Hall state. Phys. Rev. Lett. 96, 016802 (2006).

    Article  ADS  Google Scholar 

  3. Bonderson, P., Kitaev, A. & Shtengel, K. Detecting non-abelian statistics in the ν = 5/2 fractional quantum Hall state. Phys. Rev. Lett. 96, 016803 (2006).

    Article  ADS  Google Scholar 

  4. Chklovskii, D. B., Shklovskii, B. I. & Glazman, L. I. Electrostatics of edge channels. Phys. Rev. B 46, 4026–4034 (1992).

    Article  ADS  Google Scholar 

  5. Zhitenev, N. B., Haug, R. J., Klitzing, K. V. & Eberl, K. Time-resolved measurements of transport in edge channels. Phys. Rev. Lett. 71, 2292–2295 (1993).

    Article  ADS  Google Scholar 

  6. Hwang, S. W., Tsui, D. C. & Shayegan, M. Experimental evidence for finite-width edge channels in integer and fractional quantum Hall effects. Phys. Rev. B 48, 8161–8165 (1993).

    Article  ADS  Google Scholar 

  7. Yacoby, A., Hess, H., Fulton, T., Pfeiffer, L. & West, K. Electrical imaging of the quantum Hall state. Solid State Commun. 111, 1–13 (1999).

    Article  ADS  Google Scholar 

  8. Huber, M. et al. Structure of a single sharp quantum Hall edge probed by momentum-resolved tunneling. Phys. Rev. Lett. 94, 016805 (2005).

    Article  ADS  Google Scholar 

  9. MacDonald, A. H. Edge states in the fractional-quantum-Hall-effect regime. Phys. Rev. Lett. 64, 220–223 (1990).

    Article  ADS  Google Scholar 

  10. Wen, X. G. Electrodynamical properties of gapless edge excitations in the fractional quantum Hall states. Phys. Rev. Lett. 64, 2206–2209 (1990).

    Article  ADS  Google Scholar 

  11. Ashoori, R. C., Stormer, H. L., Pfeiffer, L. N., Baldwin, K. W. & West, K. Edge magnetoplasmons in the time domain. Phys. Rev. B 45, 3894–3897 (1992).

    Article  ADS  Google Scholar 

  12. Kane, C. L., Fisher, M. P. A. & Polchinski, J. Randomness at the edge: Theory of quantum Hall transport at filling ν = 2/3. Phys. Rev. Lett. 72, 4129–4132 (1994).

    Article  ADS  Google Scholar 

  13. Kane, C. L. & Fisher, M. P. A. Quantized thermal transport in the fractional quantum Hall effect. Phys. Rev. B 55, 15832–15837 (1997).

    Article  ADS  Google Scholar 

  14. Bid, A. et al. Observation of neutral modes in the fractional quantum Hall regime. Nature 466, 585–590 (2010).

    Article  ADS  Google Scholar 

  15. Deviatov, E. V., Lorke, A., Biasiol, G. & Sorba, L. Energy transport by neutral collective excitations at the quantum Hall edge. Phys. Rev. Lett. 106, 256802 (2011).

    Article  ADS  Google Scholar 

  16. van Wees, B. J. et al. Anomalous integer quantum Hall effect in the ballistic regime with quantum point contacts. Phys. Rev. Lett. 62, 1181–1184 (1989).

    Article  ADS  Google Scholar 

  17. Kouwenhoven, L. P. et al. Selective population and detection of edge channels in the fractional quantum Hall regime. Phys. Rev. Lett. 64, 685–688 (1990).

    Article  ADS  Google Scholar 

  18. Altimiras, C. et al. Non-equilibrium edge-channel spectroscopy in the integer quantum Hall regime. Nature Physics 6, 34–39 (2009).

    Article  ADS  Google Scholar 

  19. Altimiras, C. et al. Tuning energy relaxation along quantum Hall channels. Phys. Rev. Lett. 105, 226804 (2010).

    Article  ADS  Google Scholar 

  20. Takei, S., Milletarì, M. & Rosenow, B. Nonequilibrium electron spectroscopy of Luttinger liquids. Phys. Rev. B 82, 041306 (2010).

    Article  ADS  Google Scholar 

  21. Granger, G., Eisenstein, J. P. & Reno, J. L. Observation of chiral heat transport in the quantum Hall regime. Phys. Rev. Lett. 102, 086803 (2009).

    Article  ADS  Google Scholar 

  22. Altimiras, C. et al. Chargeless heat transport in the fractional quantum Hall regime. Phys. Rev. Lett. 109, 026803 (2012).

    Article  ADS  Google Scholar 

  23. Deviatov, E. V., Ganczarczyk, A., Lorke, A., Biasiol, G. & Sorba, L. Quantum Hall Mach–Zehnder interferometer far beyond equilibrium. Phys. Rev. B 84, 235313 (2011).

    Article  ADS  Google Scholar 

  24. Lee, S.-S., Ryu, S., Nayak, C. & Fisher, M. P. A. Particle–hole symmetry and the quantum Hall state. Phys. Rev. Lett. 99, 236807 (2007).

    Article  ADS  Google Scholar 

  25. Levin, M., Halperin, B. I. & Rosenow, B. Particle-hole symmetry and the Pfaffian state. Phys. Rev. Lett. 99, 236806 (2007).

    Article  ADS  Google Scholar 

  26. Dolev, M. et al. Characterizing neutral modes of fractional states in the second Landau level. Phys. Rev. Lett. 107, 036805 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from Microsoft Corporation Project Q, the NSF GRFP and the DOE SCGF Program.

Author information

Authors and Affiliations

Authors

Contributions

V.V. and S.H. conceived and designed the experiments, prepared samples, carried out the experiments and data analysis and wrote the paper. A.Y. conceived and designed the experiments, carried out data analysis and wrote the paper. L.N.P. and K.W.W. carried out the molecular beam epitaxy growth.

Corresponding author

Correspondence to Amir Yacoby.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2871 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatachalam, V., Hart, S., Pfeiffer, L. et al. Local thermometry of neutral modes on the quantum Hall edge. Nature Phys 8, 676–681 (2012). https://doi.org/10.1038/nphys2384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2384

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing