Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strong interactions of single atoms and photons near a dielectric boundary

Abstract

Cavity quantum electrodynamics provides the setting for quantum control of strong interactions between a single atom and one photon. Many such atom–cavity systems interacting by coherent exchanges of single photons could be the basis for scalable quantum networks. However, moving beyond current proof-of-principle experiments involving just one or two conventional optical cavities requires the localization of individual atoms at distances 100 nm from a resonator’s surface. In this regime an atom can be strongly coupled to a single intracavity photon while at the same time experiencing significant radiative interactions with the dielectric boundaries of the resonator. Here, we report using real-time detection and high-bandwidth feedback to select and monitor single caesium atoms located 100 nm from the surface of a microtoroidal optical resonator. Strong radiative interactions of atom and cavity field probe atomic motion through the evanescent field of the resonator and reveal both the significant role of Casimir–Polder attraction and the manifestly quantum nature of the atom–cavity dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radiative interactions and optical potentials for an atom near the surface of a toroidal resonator.
Figure 2: Observation and simulation of atomic transits within the evanescent field of the microtoroidal resonator for Δcapa=0.
Figure 3: Dynamics and trajectories for strongly coupled atoms moving in surface and dipole potentials {Us,Ud}.
Figure 4: Transmission T(ωp) and reflection R(ωp) spectra for single atoms coupled to a microtoroidal resonator.
Figure 5: Photon statistics for localized atoms with Δca=0,Δpa=0.

Similar content being viewed by others

References

  1. Casimir, H. B. G. & Polder, D. The influence of retardation on the London–van der Waals forces. Phys. Rev. 73, 360–372 (1948).

    Article  ADS  Google Scholar 

  2. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  3. Drexhage, K. H. in Progress in Optics, Vol. XII (ed. Wolf, E.) 163–232 (Elsevier, 1974).

    Book  Google Scholar 

  4. Gabrielse, G. & Dehmelt, H. Observation of inhibited spontaneous emission. Phys. Rev. Lett. 55, 67–70 (1985).

    Article  ADS  Google Scholar 

  5. Hulet, R. G., Hilfer, E. S. & Kleppner, D. Inhibited spontaneous emission by a Rydberg atom. Phys. Rev. Lett. 55, 2137–2140 (1985).

    Article  ADS  Google Scholar 

  6. Haroche, S. & Kleppner, D. Cavity quantum electrodynamics. Phys. Today 42, 24–30 (1989).

    Article  ADS  Google Scholar 

  7. Sukenik, C. I., Boshier, M. G., Cho, D., Sandoghar, V. & Hinds, E. A. Measurement of the Casimir–Polder force. Phys. Rev. Lett. 70, 560–563 (1993).

    Article  ADS  Google Scholar 

  8. Berman, P. Cavity Quantum Electrodynamics (Academic Press, 1994).

    Google Scholar 

  9. Odom, B., Hanneke, D., D’Urso, B. & Gabrielse, G. New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett. 97, 030801 (2006).

    Article  ADS  Google Scholar 

  10. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  ADS  Google Scholar 

  11. Jaynes, E. T. & Cummings, F. W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963).

    Article  Google Scholar 

  12. Meschede, D., Walther, H. & Müller, G. One-atom maser. Phys. Rev. Lett. 54, 551–554 (1985).

    Article  ADS  Google Scholar 

  13. Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).

    Article  ADS  Google Scholar 

  14. Haroche, S. & Raimond, J-M. Exploring the Quantum: Atoms Cavities, and Photons (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  15. Miller, R. et al. Trapped atoms in cavity QED: Coupling quantized light and matter. J. Phys. B 38, S551–S565 (2005).

    Article  Google Scholar 

  16. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2004).

    Article  ADS  Google Scholar 

  17. Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nature Phys. 2, 81–90 (2006).

    Article  ADS  Google Scholar 

  18. Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008).

    Article  ADS  Google Scholar 

  19. McKeever, J., Boca, A., Boozer, A. D., Buck, J. R. & Kimble, H. J. Experimental realization of a one-atom laser in the regime of strong coupling. Nature 425, 268–271 (2003).

    Article  ADS  Google Scholar 

  20. Weber, B. et al. Photon-photon entanglement with a single trapped atom. Phys. Rev. Lett. 102, 030501 (2009).

    Article  ADS  Google Scholar 

  21. DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009).

    Article  ADS  Google Scholar 

  22. Gehr, R. et al. Cavity-based single atom preparation and high-fidelity hyperfine state readout. Phys. Rev. Lett. 104, 203602 (2010).

    Article  ADS  Google Scholar 

  23. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  24. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    Article  ADS  Google Scholar 

  25. Rosenblit, M., Horak, P., Helsby, S. & Folman, R. Single-atom detection using whispering-gallery modes of microdisk resonators. Phys. Rev. A 70, 053808 (2004).

    Article  ADS  Google Scholar 

  26. Lev, B., Srinivasan, K., Barclay, P., Painter, O. & Mabuchi, H. Feasibility of detecting single atoms using photonic bandgap cavities. Nanotechnology 15, S556–S561 (2004).

    Article  ADS  Google Scholar 

  27. Spillane, S. M. et al. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005).

    Article  ADS  Google Scholar 

  28. Colombe, Y. et al. Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007).

    Article  ADS  Google Scholar 

  29. Eichenfield, M., Camacho, R., Chan, J., Vahala, K. J. & Painter, O. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–556 (2009).

    Article  ADS  Google Scholar 

  30. Folman, R., Krüger, P., Schmiedmayer, J., Denschlag, J. & Henkel, C. Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).

    Article  ADS  Google Scholar 

  31. Reichel, J. Microchip traps and Bose–Einstein condensation. Appl. Phys. B 75, 469–487 (2002).

    Article  ADS  Google Scholar 

  32. Aoki, T. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 442, 671–674 (2006).

    Article  ADS  Google Scholar 

  33. Dayan, B. et al. A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008).

    Article  ADS  Google Scholar 

  34. Aoki, T. et al. Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102, 083601 (2009).

    Article  ADS  Google Scholar 

  35. Vernooy, D. W. & Kimble, H. J. Quantum structure and dynamics for atom galleries. Phys. Rev. A 55, 1239–1261 (1997).

    Article  ADS  Google Scholar 

  36. Rosenblit, M., Japha, Y., Horak, P. & Folman, R. Simultaneous optical trapping and detection of atoms by microdisk resonators. Phys. Rev. A 73, 063805 (2006).

    Article  ADS  Google Scholar 

  37. Birnbaum, K. M., Parkins, A. S. & Kimble, H. J. Cavity QED with multiple hyperfine levels. Phys. Rev. A 74, 063802 (2006).

    Article  ADS  Google Scholar 

  38. Buhmann, S. Y. Casimir–Polder forces on excited atoms in the strong atom-field coupling regime. Phys. Rev. A 77, 012110 (2008).

    Article  ADS  Google Scholar 

  39. Balykin, V. I., Hakuta, K., Le Kien, F., Liang, J. Q. & Morinaga, M. Atom trapping and guiding with a subwavelength-diameter optical fiber. Phys. Rev. A 70, 011401(R) (2004).

    Article  ADS  Google Scholar 

  40. Vetsch, E. et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010).

    Article  ADS  Google Scholar 

  41. Ye, J., Kimble, H. J. & Katori, H. Quantum state engineering and precision metrology using state-insensitive light traps. Science 320, 1734–1738 (2008).

    Article  ADS  Google Scholar 

  42. Mabuchi, H. & Kimble, H. J. Atom galleries for whispering atoms: binding atoms in stable orbits around an optical resonator. Opt. Lett. 19, 749–751 (1994).

    Article  ADS  Google Scholar 

  43. Spillane, S. M., Kippenberg, T. J., Painter, O. & Vahala, K. J. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from NSF, DoD NSSEFF programme, Northrop Grumman Aerospace Systems, ARO and IARPA. N.P.S. acknowledges support of the Caltech Tolman Postdoctoral Fellowship. H.L. thanks the Center for the Physics of Information. Toroid fabrication was done in the Kavli Nanoscience Institute. The authors thank A. S. Parkins, J. Ye and P. Zoller for illuminating discussions.

Author information

Authors and Affiliations

Authors

Contributions

T.A. and H.J.K. conceived the experiment. D.J.A. and N.P.S. carried out the measurements, analysed data and implemented simulation modelling. H.L., E.O. and K.J.V. fabricated microtoroids and provided expertise for tapered fibre coupling. D.J.A., N.P.S. and H.J.K. prepared the manuscript.

Corresponding author

Correspondence to H. J. Kimble.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2182 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alton, D., Stern, N., Aoki, T. et al. Strong interactions of single atoms and photons near a dielectric boundary. Nature Phys 7, 159–165 (2011). https://doi.org/10.1038/nphys1837

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing