Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heavy electrons and the symplectic symmetry of spin

Abstract

The recent discovery of two heavy-fermion materials PuCoGa5 and NpPd5Al2, which transform directly from Curie paramagnets into superconductors, reveals a new class of superconductors where local moments quench directly into the superconducting condensate. Unlike other heavy-electron superconductors, where Cooper pairing is thought to be driven by spin fluctuations, these higher-transition-temperature materials do not seem to be close to a magnetic instability. Large-N expansions have been invaluable in describing heavy-fermion metals, but so far cannot treat superconductivity. Here, we introduce a new class of large-N expansion that uses symplectic symmetry to protect the odd time-reversal parity of spin and sustain Cooper pairs as well-defined singlets. We show that when a lattice of magnetic ions exchange spin with their metallic environment in two distinct symmetry channels, they can simultaneously satisfy both channels by forming a condensate of composite pairs between local moments and electrons. In the tetragonal crystalline environment relevant to PuCoGa5 and NpPd5Al2, the lattice structure selects a natural pair of spin exchange channels, predicting a unique anisotropic paired state with either d- or g-wave symmetry. This pairing mechanism also predicts a large upturn in the NMR relaxation rate above Tc and strong enhancement of Andreev reflection in tunnelling measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Composite pairing in two crystal field screening channels.
Figure 2: Phase diagram for a two-channel Kondo lattice, computed in the symplectic large-N limit for tetragonal symmetry, where spin is exchanged via channels Γ1Γ7+ and Γ2Γ7.
Figure 3: Upturn in the NMR relaxation rate created by the cooperative interference of the Kondo effect in two channels at different sites, for the extreme case of maximum Tc, where J1=J2 (blue line), compared with measured NMR relaxation rate in PuCoGa5 (ref. 31) (yellow circles).

Similar content being viewed by others

References

  1. Read, N. & Newns, D. M. A new functional integral formalism for the degenerate Anderson model. J. Phys. C 16, L1055–L1060 (1983).

    ADS  Google Scholar 

  2. Read, N. & Newns, D. M. On the solution of the Coqblin–Schrieffer Hamiltonian by the large-N expansion technique. J. Phys. C 16, 3273–3295 (1983).

    Article  ADS  Google Scholar 

  3. Auerbach, A. & Levin, K. Kondo Bosons and the Kondo lattice: Microscopic basis for the heavy Fermi liquid. Phys. Rev. Lett. 57, 877–880 (1986).

    Article  ADS  Google Scholar 

  4. Affleck, I. & Marston, J. B. Large-N limit of the Heisenberg–Hubbard model: Implications for high-Tc superconductors. Phys. Rev. B 37, 3774–3777 (1988).

    Article  ADS  Google Scholar 

  5. Arovas, D. P. & Auerbach, A. Functional integral theories of low-dimensional quantum Heisenberg models. Phys. Rev. B 38, 316–332 (1988).

    Article  ADS  Google Scholar 

  6. Sarrao, J. L. et al. Plutonium-based superconductivity with a transition temperature above 18 K. Nature 420, 297–299 (2002).

    Article  ADS  Google Scholar 

  7. Aoki, D. et al. Unconventional heavy-Fermion superconductivity of a new transuranium compound NpPd5Al2 . J. Phys. Soc. Japan 76, 063701–063704 (2008).

    Article  ADS  Google Scholar 

  8. Beal Monod, M. T., Bourbonnais, C. & Emery, V. Possible superconductivity in nearly antiferromagnetic itinerant fermion systems. Phys. Rev. B. 34, 7716–7720 (1986).

    Article  ADS  Google Scholar 

  9. Miyake, K., Schmidt Rink, S. & Varma, C. M. Spin-fluctuation-mediated even-parity pairing in heavy-fermion superconductor. Phys. Rev. B 34, 6554–6556 (1986).

    Article  ADS  Google Scholar 

  10. Scalapino, D. J., Loh, E. & Hirsch, J. E. d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986).

    Article  ADS  Google Scholar 

  11. Mathur, N. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    Article  ADS  Google Scholar 

  12. Monthoux, P. & Lonzarich, G. G. Magnetically mediated superconductivity in quasi-two and three dimensions. Phys. Rev. B 63, 054529–054538 (2001).

    Article  ADS  Google Scholar 

  13. Monthoux, P. & Lonzarich, G. G. Magnetically mediated superconductivity: Crossover from cubic to tetragonal lattice. Phys. Rev. B 66, 224504–224511 (2002).

    Article  ADS  Google Scholar 

  14. Tanaka, K., Ikeda, H. & Yamada, K. Theory of superconductivity in PuCoGa5 . J. Phys. Soc. Japan 73, 1285–1289 (2004).

    Article  ADS  Google Scholar 

  15. Sakurai, J. J. Modern Quantum Mechanics Revised Edition 277 (Addison-Wesley, Reading, MA, 1994).

    Google Scholar 

  16. Read, N. & Sachdev, S. Large-N expansion for frustrated quantum antiferromagnets. Phys. Rev. Lett. 66, 1773–1776 (1991).

    Article  ADS  Google Scholar 

  17. Sachdev, S. & Wang, Z. Pairing in two dimensions: A systematic approach.. Phys. Rev. B 43, 10229–10235 (1991).

    Article  ADS  Google Scholar 

  18. Tchernyshyov, O., Moessner, R. & Sondhi, S. L. Flux expulsion and greedy bosons: Frustrated magnets at large-N. Europhys. Lett. 73, 278–284 (2006).

    Article  ADS  Google Scholar 

  19. Sachdev, S. Kagomé- and triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons’. Phys. Rev. B 45, 12377–12396 (1992).

    Article  ADS  Google Scholar 

  20. Vojta, M., Zhang, Y. & Sachdev, S. Competing orders and quantum criticality in doped antiferromagnets. Phys. Rev. B 62, 6721–6744 (2000).

    Article  ADS  Google Scholar 

  21. Nickolić, P. & Sachdev, S. Renormalization-group fixed points, universal phase diagram, and 1/N expansion for quantum liquids with interactions near the unitarity limit. Phys. Rev. A 75, 033608–033621 (2007).

    Article  ADS  Google Scholar 

  22. Veillette, M., Sheehy, D. & Radzihovsky, L. Large-N expansion for unitary superfluid Fermi gases. Phys. Rev. A 75, 043614–043636 (2007).

    Article  ADS  Google Scholar 

  23. Wu, C. & Zhang, S. Sufficient condition for absence of the sign problem in the fermionic quantum Monte Carlo algorithm. Phys. Rev. B 71, 155115–155128 (2005).

    Article  ADS  Google Scholar 

  24. Affleck, I., Zou, Z., Hsu, T. & Anderson, P. W. SU(2) gauge symmetry of the large-U limit of the Hubbard model. Phys. Rev. B 38, 745–747 (1988).

    Article  ADS  Google Scholar 

  25. Ceccatto, H. A., Gazza, C. J. & Trumper, A. E. Nonclassical disordered phase in the strong quantum limit of frustrated antiferromagnets. Phys. Rev. B 47, 12329–12332 (1993).

    Article  ADS  Google Scholar 

  26. Cox, D. L. & Jarrell, M. The two-channel Kondo route to non-Fermi-liquid metals. J. Phys. Condens. Matter 8, 9825–9853 (1996).

    Article  ADS  Google Scholar 

  27. Mark, J., Pang, H. & Cox, D. L. Phase diagram of the two-channel Kondo lattice. Phys. Rev. Lett. 78, 1996–2000 (1997).

    Article  ADS  Google Scholar 

  28. Cox, D. L. & Zawadowski, A. Exotic Kondo effects in metals: Magnetic ions in a crystalline electric field and tunneling centers. Adv. Phys. 47, 599–942 (1998).

    Article  Google Scholar 

  29. Coleman, P., Tsvelik, A. M., Andrei, N. & Kee, H. Y. Co-operative Kondo effect in the two-channel Kondo lattice. Phys. Rev. B 60, 3608–3628 (1999).

    Article  ADS  Google Scholar 

  30. Ran, Y. & Wen, X. G. Detecting topological order through a continuous quantum phase transition. Phys. Rev. Lett. 96, 026802–026805 (2006).

    Article  ADS  Google Scholar 

  31. Curro, N. J. et al. Unconventional superconductivity in PuCoGa5 . Nature 434, 622–625 (2005).

    Article  ADS  Google Scholar 

  32. Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).

    Article  ADS  Google Scholar 

  33. Kaminski, A., Nazarov, Yu. V. & Glazman, L. I. Suppression of the kondo effect in a quantum dot by external irradiation. Phys. Rev. Lett. 83, 384–387 (1999).

    Article  ADS  Google Scholar 

  34. Park, W. K., Sarrao, J. L., Thompson, J. D. & Greene, L. H. Andreev reflection in heavy-Fermion superconductors and order parameter symmetry in CeCoIn5 . Phys. Rev. Lett. 100, 177001 (2008).

    Article  ADS  Google Scholar 

  35. Wastin, F., Boulet, P., Rebizant, J., Colineau, E. & Lander, G. H. Advances in the preparation and characterization of transuranium systems. J. Phys. Condens. Matter 15, S2279–S2285 (2003).

    Article  ADS  Google Scholar 

  36. Hegger, H. et al. Pressure-induced superconductivity in quasi-2D CeRhIn5 . Phys. Rev. Lett. 84, 4986–4989 (2000).

    Article  ADS  Google Scholar 

  37. Petrovic, C. et al. A new heavy-fermion superconductor CeIrIn5: A relative of the cuprates? Europhys. Lett. 53, 354–359 (2001).

    Article  ADS  Google Scholar 

  38. Petrovic, C. et al. Heavy-fermion superconductivity in CeCoIn5 at 2.3 K. J. Phys. Condens. Matter 13, L337–L342 (2001).

    Article  Google Scholar 

  39. Christianson, A. D. et al. Crystalline electric field effects in CeMIn5: Superconductivity and the influence of Kondo spin fluctuations. Phys. Rev. B 70, 134505–134513 (2004).

    Article  ADS  Google Scholar 

  40. Larkin, A. I. & Melnikov, V. I. Magnetic impurities in an almost magnetic metal. Sov. Phys. JETP 34, 656–661 (1972).

    ADS  Google Scholar 

  41. Maebashi, H., Miyake, K. & Varma, C. M. Undressing the Kondo effect near the antiferromagnetic quantum critical point. Phys. Rev. Lett. 95, 207207–207211 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation grant DMR-0605935 and US Department of Energy grant DE-FE02 00ER45790 (M.D.). The authors would like to thank N. Andrei, K. Basu, E. Miranda, R. Moessner, P. Pagliuso, S. Sachdev, N. Read, G. Zarand and particularly S. Thomas, for discussions related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Coleman.

Supplementary information

Supplementary Information

Supplementary Information and Supplementary Figures 1—4 (PDF 887 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flint, R., Dzero, M. & Coleman, P. Heavy electrons and the symplectic symmetry of spin. Nature Phys 4, 643–648 (2008). https://doi.org/10.1038/nphys1024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1024

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing