Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local equilibrium in bird flocks

Abstract

The correlated motion of flocks is an example of global order emerging from local interactions. An essential difference with respect to analogous ferromagnetic systems is that flocks are active: animals move relative to each other, dynamically rearranging their interaction network. This non-equilibrium characteristic has been studied theoretically, but its impact on actual animal groups remains to be fully explored experimentally. Here, we introduce a novel dynamical inference technique, based on the principle of maximum entropy, which accommodates network rearrangements and overcomes the problem of slow experimental sampling rates. We use this method to infer the strength and range of alignment forces from data of starling flocks. We find that local bird alignment occurs on a much faster timescale than neighbour rearrangement. Accordingly, equilibrium inference, which assumes a fixed interaction network, gives results consistent with dynamical inference. We conclude that bird orientations are in a state of local quasi-equilibrium over the interaction length scale, providing firm ground for the applicability of statistical physics in certain active systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Performance of the inference methods on the predicted interaction range nc.
Figure 2: Comparison between the two relevant timescales of active matter, as inferred in 14 natural flocks using our inference method based on exact integration.
Figure 3: Inference on natural flocks.

Similar content being viewed by others

References

  1. Camazine, S. et al. Self-Organization in Biological Systems (Princeton Univ. Press, 2001).

    Google Scholar 

  2. Krause, J. & Ruxton, G. D. Living in Groups (Oxford Univ. Press, 2002).

    Google Scholar 

  3. Sumpter, D. J. Collective Animal Behavior (Princeton Univ. Press, 2010).

    Book  Google Scholar 

  4. Toner, J. & Tu, Y. Flocks, herds, and schools: a quantitative theory of flocking. Phys. Rev. E 58, 4828–4858 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  5. Ramaswamy, S. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1, 323–345 (2010).

    Article  ADS  Google Scholar 

  6. Vicsek, T. & Zafeiris, A. Collective motion. Phys. Rep. 517, 71–140 (2012).

    Article  ADS  Google Scholar 

  7. Marchetti, M. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    Article  ADS  Google Scholar 

  8. Toner, J. & Tu, Y. Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys. Rev. Lett. 75, 4326–4329 (1995).

    Article  ADS  Google Scholar 

  9. Ballerini, M. et al. Empirical investigation of starling flocks: a benchmark study in collective animal behaviour. Anim. Behav. 76, 201–215 (2008).

    Article  Google Scholar 

  10. Cavagna, A. et al. The STARFLAG handbook on collective animal behaviour: 1. Empirical methods. Anim. Behav. 76, 217–236 (2008).

    Article  Google Scholar 

  11. Cavagna, A., Giardina, I., Orlandi, A., Parisi, G. & Procaccini, A. The STARFLAG handbook on collective animal behaviour: 2. Three-dimensional analysis. Anim. Behav. 76, 237–248 (2008).

    Article  Google Scholar 

  12. Attanasi, A. et al. Greta—a novel global and recursive tracking algorithm in three dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 37, 2451–2463 (2015).

    Article  Google Scholar 

  13. Bialek, W. et al. Statistical mechanics for natural flocks of birds. Proc. Natl Acad. Sci. USA 109, 4786–4791 (2012).

    Article  ADS  Google Scholar 

  14. Lukeman, R., Li, Y.-X. & Edelstein-Keshet, L. Inferring individual rules from collective behavior. Proc. Natl Acad. Sci. USA 207, 12576–12580 (2010).

    Article  ADS  Google Scholar 

  15. Katz, Y., Tunstrom, K., Ioannou, C. C., Huepe, C. & Couzin, I. D. Inferring the structure and dynamics of interactions in schooling fish. Proc. Natl Acad. Sci. USA 108, 18720–18725 (2011).

    Article  ADS  Google Scholar 

  16. Herbert-Read, J. E. et al. Inferring the rules of interaction of shoaling fish. Proc. Natl Acad. Sci. USA 108, 18726–18731 (2011).

    Article  ADS  Google Scholar 

  17. Gautrais, J. et al. Deciphering interactions in moving animal groups. PLoS Comput. Biol. 8, e1002678 (2012).

    Article  MathSciNet  Google Scholar 

  18. Strandburg-Peshkin, A. et al. Visual sensory networks and effective information transfer in animal groups. Curr. Biol. 23, R709–R711 (2013).

    Article  Google Scholar 

  19. Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl Acad. Sci. USA 112, 4690–4695 (2015).

    Article  ADS  Google Scholar 

  20. Cavagna, A. et al. Dynamical maximum entropy approach to flocking. Phys. Rev. E 89, 042707 (2014).

    Article  ADS  Google Scholar 

  21. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  22. Cavagna, A. et al. Short-range interactions versus long-range correlations in bird flocks. Phys. Rev. E 92, 012705 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  23. Parisi, G. Statistical Field Theory (Frontiers in Physics, Addison-Wesley, 1988).

    MATH  Google Scholar 

  24. Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

    Article  ADS  Google Scholar 

  25. Ferrante, E., Turgut, A. E., Dorigo, M. & Huepe, C. Elasticity-based mechanism for the collective motion of self-propelled particles with springlike interactions: a model system for natural and artificial swarms. Phys. Rev. Lett. 111, 268302 (2013).

    Article  ADS  Google Scholar 

  26. Cavagna, A., Duarte Queirós, S. M., Giardina, I., Stefanini, F. & Viale, M. Diffusion of individual birds in starling flocks. Proc. Biol. Sci. 280, 20122484 (2013).

    Article  Google Scholar 

  27. Attanasi, A. et al. Finite-size scaling as a way to probe near-criticality in natural swarms. Phys. Rev. Lett. 113, 238102 (2014).

    Article  ADS  Google Scholar 

  28. Attanasi, A. et al. Collective behaviour without collective order in wild swarms of midges. PLoS Comput. Biol. 10, e1003697 (2014).

    Article  Google Scholar 

  29. Attanasi, A. et al. Information transfer and behavioural inertia in starling flocks. Nature Phys. 10, 691–696 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work in Paris was supported European Research Council Starting Grant 306312. Work in Rome was supported by IIT-Seed Artswarm, European Research Council Starting Grant 257126, and US Air Force Office of Scientific Research Grant FA95501010250 (through the University of Maryland). F.G. acknowledges support from EU Marie Curie ITN grant n. 64256 (COSMOS) and Marie Curie CIG PCIG13-GA-2013-618399.

Author information

Authors and Affiliations

Authors

Contributions

A.C., I.G., T.M. and A.M.W. designed the study. A.C., L.D.C., I.G., S.M., L.P. and M.V. acquired and processed the data. A.C., I.G., F.G., T.M. and A.M.W. developed the inference method. A.C., I.G., T.M. and A.M.W. wrote the paper.

Corresponding author

Correspondence to Thierry Mora.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora, T., Walczak, A., Del Castello, L. et al. Local equilibrium in bird flocks. Nature Phys 12, 1153–1157 (2016). https://doi.org/10.1038/nphys3846

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3846

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing