Articles in 2009

Filter By:

Article Type
Year
  • In semiconductor quantum dots, interactions between the confined electrons and the surrounding reservoir of nuclear spins limit the attainable electron-spin coherence. But the nuclear-spin reservoir can also take a constructive role, as it facilitates the locking of the optical quantum-dot resonance to the changing frequency of an external driving laser, as an experiment now demonstrates.

    • C. Latta
    • A. Högele
    • A. Imamoglu
    Article
  • A technique that allows the electrical detection of spin-polarized transport in semiconductors without disturbing the spin-polarized current or using magnetic elements has now been demonstrated. The approach could lead to the integration of spintronics elements into semiconductor microelectronic circuits.

    • J. Wunderlich
    • A. C. Irvine
    • T. Jungwirth
    Article
  • The first experimental demonstration of saturable absorption in core-electron transitions in aluminium paves the way for investigating warm dense matter, which potentially has an important role in planetary science and the realization of inertial confinement fusion.

    • Bob Nagler
    • Ulf Zastrau
    • Justin S. Wark
    Article
  • The effect of disorder in conventional two-dimensional electron systems is usually described in terms of individual electrons interacting with an underlying disorder potential. Scanning single-electron transistor measurements of graphene in a strong magnetic field indicate that in this system, coulombic interactions between electrons must also be taken into account.

    • J. Martin
    • N. Akerman
    • A. Yacoby
    Article
  • The size-distribution profile of raindrops when they reach the ground was previously thought to be governed by complex interactions between neighbouring droplets as they fall. High-speed videos of falling water droplets suggest this is not the case, and that their size distribution can be explained by the fragmentation of individual droplets alone.

    • Emmanuel Villermaux
    • Benjamin Bossa
    Article
  • Black holes are difficult to study experimentally, owing to their distance from us and indeed their very nature. A theoretical study suggests that optical metamaterials that exhibit behaviour that is reminiscent of that of black holes, could enable us to learn more about these and other astrophysical objects.

    • Dentcho A. Genov
    • Shuang Zhang
    • Xiang Zhang
    Article
  • The first evidence of supersolidity—the potential ability of solids to move without friction—in solid 4He was obtained in torsional-oscillator experiments. But later observations raised the possibility that the characteristic frequency changes were simply due to stiffening of the solid. Now, the results from a series of experiments comparing 3He and 4He rule out that explanation.

    • Joshua T. West
    • Oleksandr Syshchenko
    • Moses H. W. Chan
    Article
  • In 1970, Vitaly Efimov predicted that three interacting particles can form an infinite series of bound trimer states, even when none of the two-particle subsystems is stable. Experimental evidence for such an exotic state was obtained in 2006, but now an Efimov spectrum, containing two such states with the predicted scaling between them, has been observed.

    • M. Zaccanti
    • B. Deissler
    • G. Modugno
    Article
  • Simultaneous coherent control of internal and motional states of a Bose–Einstein condensate has been demonstrated on an ‘atom chip’. The method should provide a route to generating many-particle entangled states, which are needed for entanglement-based technologies such as quantum-information processing or quantum-enhanced metrology.

    • Pascal Böhi
    • Max F. Riedel
    • Philipp Treutlein
    Article
  • A quantum computer requires quantum systems that are well-isolated from external perturbations, but which can still be easily manipulated with external fields. A scheme that uses spatially inhomogeneous fields to selectively address neutral-atom qubits while they are in field-insensitive superposition states satisfies these competing needs.

    • N. Lundblad
    • J. M. Obrecht
    • J. V. Porto
    Article
  • Bound macrodimers have now been directly observed for the first time. Macrodimers comprise two Rydberg atoms with a separation as large as 9 μm. The unique properties of macrodimers mean that they enable new experiments for investigating ultracold gases.

    • K. R. Overstreet
    • A. Schwettmann
    • J. P. Shaffer
    Article
  • It is not surprising that a microfluidic channel whose walls have a ratchet-like structure can preferentially direct the flow of large particles in one direction. But a study of the movement of living cells through such channels provides the remarkable observation that the direction of preferred motion can be different for different species of cell.

    • Goher Mahmud
    • Christopher J. Campbell
    • Bartosz A. Grzybowski
    Article
  • Lévy flights, a form of random walk, are quite common in nature. However only macroscopic signatures, obtained by averaging over many steps, have been measured so far. Now, the individual steps are observed directly as light scatters in a hot atomic vapour.

    • N. Mercadier
    • W. Guerin
    • R. Kaiser
    Article
  • Femtosecond laser pulses can demagnetize ferromagnetic metallic thin films on an ultrafast timescale. Studying how a single optical pulse interacts with a magnetic film now provides a better understanding of this so-called femtomagnetism.

    • Jean-Yves Bigot
    • Mircea Vomir
    • Eric Beaurepaire
    Article
  • Magnetic reconnection—the process by which magnetic field-lines break and reform in a plasma—is believed to be an important part of many astrophysical phenomena, but is poorly understood. The recreation of 3D reconnection events in a laboratory plasma provides a powerful means of studying the parameters that govern the onset, evolution and decay of this process.

    • T. P. Intrator
    • X. Sun
    • I. Furno
    Article
  • A potentially general mechanism for symmetry breaking in mesoscopic quantum systems is revealed in a theoretical study, which shows how, in a rotating Bose–Einstein condensate, the symmetry properties of the true many-body state are related to those of its mean-field approximation.

    • D. Dagnino
    • N. Barberán
    • J. Dalibard
    Article
  • Measurements of the distribution of stochastic switching currents in homogeneous, ultra-narrow superconducting nanowires provide strong evidence that the low-temperature current-switching in such systems occurs through quantum phase slips—topological quantum fluctuations of the superconducting order parameter via which tunnelling occurs between current-carrying states.

    • Mitrabhanu Sahu
    • Myung-Ho Bae
    • Alexey Bezryadin
    Article
  • First-principles calculations predict that Bi2Se3, Bi2Te3 and Sb2Te3 are topological insulators—three-dimensional semiconductors with unusual surface states generated by spin–orbit coupling—whose surface states are described by a single gapless Dirac cone. The calculations further predict that Bi2Se3 has a non-trivial energy gap larger than the energy scale kBT at room temperature.

    • Haijun Zhang
    • Chao-Xing Liu
    • Shou-Cheng Zhang
    Article
  • The distributions of the sizes of cities or earthquakes, for example, follow a power law, but in physical systems different distributions of critical properties are usually seen. A scaling argument provides a practical rule to relate the type of distribution to an experimental quantity.

    • Steven T. Bramwell
    Article