Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temporal solitons in optical microresonators

Abstract

Temporal dissipative solitons in a continuous-wave laser-driven nonlinear optical microresonator were observed. The solitons were generated spontaneously when the laser frequency was tuned through the effective zero detuning point of a high-Q resonance, which led to an effective red-detuned pumping. Transition to soliton states were characterized by discontinuous steps in the resonator transmission. The solitons were stable in the long term and their number could be controlled via pump-laser detuning. These observations are in agreement with numerical simulations and soliton theory. Operating in the single-soliton regime allows the continuous output coupling of a femtosecond pulse train directly from the microresonator. This approach enables ultrashort pulse syntheses in spectral regimes in which broadband laser-gain media and saturable absorbers are not available. In the frequency domain the single-soliton states correspond to low-noise optical frequency combs with smooth spectral envelopes, critical to applications in broadband spectroscopy, telecommunications, astronomy and low noise microwave generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MgF2 microresonator, dispersion and bistability.
Figure 2: Transmission and beatnote.
Figure 3: Numerical simulations of soliton formation in a microresonator.
Figure 4: Experimental demonstration of stable temporal solitons in an optical microresonator.
Figure 5: Temporal characterization of ultrashort pulses.

Similar content being viewed by others

References

  1. Akhmediev, N. & Ankiewicz, A. Dissipative Solitons: From Optics to Biology and Medicine (Springer, 2008).

    MATH  Google Scholar 

  2. Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nature Photon. 6, 84–92 (2012).

    Article  ADS  Google Scholar 

  3. Wabnitz, S. Suppression of interactions in a phase-locked soliton optical memory. Opt. Lett. 18, 601–603 (1993).

    Article  ADS  Google Scholar 

  4. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nature Photon. 4, 471–476 (2010).

    Article  ADS  Google Scholar 

  5. Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 21, 2209–2211 (1987).

    Article  ADS  Google Scholar 

  6. Nozaki, K. & Bekki, N. Low-dimensional chaos in a driven damped nonlinear Schrödinger equation. Physica D 21, 381–393 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  7. Segev, M. & Stegeman, G. Self-trapping of optical beams: spatial solitons. Phys. Today 51, August, 42–48 (1998).

    Article  Google Scholar 

  8. Barland, S., Tredicce, J. R. & Brambilla, M. Cavity solitons as pixels in semiconductor microcavities. Nature 419, 699–702 (2002).

    Article  ADS  Google Scholar 

  9. Firth, W. J. & Weiss, C. O. Cavity and feedback solitons. Opt. Photon. News 13, 54–58 (2002).

    Article  ADS  Google Scholar 

  10. Matsko, A. B. et al. Mode-locked Kerr frequency combs. Opt. Lett. 36, 2845–2847 (2011).

    Article  ADS  Google Scholar 

  11. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  12. Braginsky, V. B., Gorodetsky, M. L. & Ilchenko, V. S. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A 137, 393–397 (1989).

    Article  ADS  Google Scholar 

  13. Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  14. Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 93902 (2008).

    Article  ADS  Google Scholar 

  15. Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon. 4, 37–40 (2010).

    Article  ADS  Google Scholar 

  16. Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nature Photon. 4, 41–45 (2010).

    Article  ADS  Google Scholar 

  17. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555 (2011).

    Article  ADS  Google Scholar 

  18. Papp, S., Del'Haye, P. & Diddams, S. Mechanical control of a microrod-resonator optical frequency comb. Phys. Rev. X 3, 031003 (2013).

    Google Scholar 

  19. Li, J., Lee, H., Chen, T. & Vahala, K. J. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett. 109, 233901 (2012).

    Article  ADS  Google Scholar 

  20. Del'Haye, P., Arcizet, O., Schliesser, A., Holzwarth, R. & Kippenberg, T. J. Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett. 101, 53903 (2008).

    Article  ADS  Google Scholar 

  21. Del'Haye, P., Papp, S. B. & Diddams, S. A. Hybrid electro-optically modulated microcombs. Phys. Rev. Lett. 109, 263901 (2012).

    Article  ADS  Google Scholar 

  22. Herr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photon. 6, 480–487 (2012).

    Article  ADS  Google Scholar 

  23. Ferdous, F. et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photon. 5, 770–776 (2011).

    Article  ADS  Google Scholar 

  24. Papp, S. B. & Diddams, S. A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Phys. Rev. A 84, 53833 (2011).

    Article  ADS  Google Scholar 

  25. Del'Haye, P. et al. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett. 107, 063901 (2011).

    Article  ADS  Google Scholar 

  26. Saha, K. et al. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt. Express 21, 1335–1343 (2013).

    Article  ADS  Google Scholar 

  27. Peccianti, M. et al. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nature Commun. 3, 765 (2012).

    Article  ADS  Google Scholar 

  28. Ilchenko, V. S. & Gorodetsky, M. L. Thermal nonlinear effects in optical whispering gallery microresonators. Laser Phys. 2, 1004–1009 (1992).

    Google Scholar 

  29. Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal selfstability of microcavities. Opt. Express 12, 4742–4750 (2004).

    Article  ADS  Google Scholar 

  30. Grudinin, I. et al. Ultra high Q crystalline microcavities. Opt. Commun. 265, 33–38 (2006).

    Article  ADS  Google Scholar 

  31. Liang, W. et al. Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator. Opt. Lett. 36, 2290–2292 (2011).

    Article  ADS  Google Scholar 

  32. Grudinin, I. S., Baumgartel, L. & Yu, N. Frequency comb from a microresonator with engineered spectrum. Opt. Express 20, 6604–6609 (2012).

    Article  ADS  Google Scholar 

  33. Wang, C. et al. Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators. Nature Commun. 4, 1345 (2013).

    Article  ADS  Google Scholar 

  34. Del'Haye, P., Arciezt, O., Gorodetsky, M. L., Holzwarth, R. & Kippenberg, T. J. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nature Photon. 3, 529–533 (2009).

    Article  ADS  Google Scholar 

  35. Savchenkov, A. A. et al. Kerr combs with selectable central frequency. Nature Photon. 5, 293–296 (2011).

    Article  ADS  Google Scholar 

  36. Barashenkov, I. V. & Smirnov, Y. S. Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons. Phys. Rev. E 54, 5707–5725 (1996).

    Article  ADS  Google Scholar 

  37. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 83904 (2004).

    Article  ADS  Google Scholar 

  38. Matsko, A. B., Savchenkov, A. A., Strekalov, D., Ilchenko, V. S. & Maleki, L. Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion. Phys. Rev. A 71, 33804 (2005).

    Article  ADS  Google Scholar 

  39. Gasch, A., Wedding, B. & Jäger, D. Multistability and soliton modes in nonlinear microwave resonators. Appl. Phys. Lett. 44, 1105–1107 (1984).

    Article  ADS  Google Scholar 

  40. Chembo, Y. K. K. & Yu, N. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A 82, 33801 (2010).

    Article  ADS  Google Scholar 

  41. Matsko, A., Savchenko, A. & Maleki, L. On excitation of breather solitons in an optical microresonator. Opt. Lett. 37, 4856–4858 (2012).

    Article  ADS  Google Scholar 

  42. Salem, R. et al. High-speed optical sampling using a silicon-chip temporal magnifier. Opt. Express 17, 4324–4329 (2009).

    Article  ADS  Google Scholar 

  43. Riemensberger, J. et al. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Opt. Express 20, 770–776 (2012).

    Article  Google Scholar 

  44. Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    Article  ADS  Google Scholar 

  45. Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo, M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett. 38, 37–39 (2013).

    Article  ADS  Google Scholar 

  46. Coen, S. & Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett. 38, 1790–1792 (2013).

    Article  ADS  Google Scholar 

  47. Chembo, Y. K. & Menyuk, C. R. Spatiotemporal Lugiato–Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87, 053852 (2013).

    Article  ADS  Google Scholar 

  48. Cundiff, S. T. & Ye, J. Colloquium: femtosecond optical frequency combs. Rev. Modern Phys. 75, 325–342 (2003).

    Article  ADS  Google Scholar 

  49. Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Ultraweak long-range interactions of solitons observed over astronomical distances. Nature Photon. 7, 657–663 (2013).

    Article  ADS  Google Scholar 

  50. Kane, D. J. Principal components generalized projections: a review. J. Optic. Soc. Am. B 25, A120–A132 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Salem and A. Gaeta for providing the PicoLuz LLC ultrafast temporal magnifier and advice when evaluating the data. The authors acknowledge valuable advice by K. Hartinger on dispersion compensation as well as helpful discussion with S. Coen and M. Erkintalo. This work was supported by the DARPA program QuASAR, the Swiss National Science Foundation. V.B. acknowledges support by an ESA PhD fellowship. J.D.J. acknowledges support by Marie Curie IIF. M.L.G. acknowledges support from RFBR grant 13-02-00271 and partial support by State Contract 07.514.12.4032. The research that led to these results received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement No. 263500.

Author information

Authors and Affiliations

Authors

Contributions

T.H. designed and performed the experiments and analysed the data. M.L.G. and T.H. performed the numerical simulations, M.L.G. developed the analytic description, V.B. assisted in the experiments, J.D.J. assisted in the temporal magnifier experiment, T.H. and M.L.G. fabricated the sample, C.Y.W. assisted in sample fabrication and N.M.K. assisted in developing the analytic description. T.H., M.L.G. and T.J.K. wrote the manuscript. T.J.K. supervised the project.

Corresponding authors

Correspondence to M. L. Gorodetsky or T. J. Kippenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1634 kb)

Supplementary Movie

Supplementary Movie (GIF 5202 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herr, T., Brasch, V., Jost, J. et al. Temporal solitons in optical microresonators. Nature Photon 8, 145–152 (2014). https://doi.org/10.1038/nphoton.2013.343

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.343

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing