Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Silicon photonics

Modulators make efficiency leap

Significant improvements in the loss and drive voltage of silicon photonics-based optical phase modulators look set to benefit both short-reach and long-distance data communications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and view of the phase shifter inside the optical modulator reported by Hiraki et al.
Figure 2: Comparison between the use of InGasP (as reported in refs 1 and 2) and Si as an n-type semiconductor in an electro-optic phase modulator.

References

  1. Han, J.-H. et al. 11, 486–490 (2017).

  2. Hiraki, T. et al. 11, 482–485 (2017).

  3. Pinguet, T. et al. In Proc. Int. Conf. Group IV Photonics (GFP) 362–364 (2008).

    Google Scholar 

  4. Law, D. et al. P802.3bs/D3.2 IEEE Draft Standard for Ethernet Amendment 10: Media Access Control Parameters, Physical Layers and Management Parameters for 200 Gb/s and 400 Gb/s Operation (IEEE, 2017).

    Google Scholar 

  5. Chen, L. et al. In Proc. Opt. Commun. Conf. (OFC) Th1B.1 (2016).

  6. Patel, D., Samani, A., Veerasubramanian, V., Ghosh, S. & Plant, D. V. Photon. Technol. Lett. 27, 2433–2436 (2015).

    Article  ADS  Google Scholar 

  7. Azadeh, S. S. et al. Opt. Express 23, 23526–23550 (2015).

    Article  ADS  Google Scholar 

  8. Fujikata, J. et al. Jpn. J. Appl. Phys. 55, 04EC01 (2016).

    Article  Google Scholar 

  9. Ding, R. et al. Opt. Express 18, 15618–15623 (2010).

    Article  ADS  Google Scholar 

  10. Palmer, R. et al. J. Lightwave Technol. 32, 2726–2734 (2014).

    Article  ADS  Google Scholar 

  11. Alloatti, L. et al. Light Sci. Applications 3, e173 (2014).

    Article  Google Scholar 

  12. Jin, D. et al. Proc. SPIE 7599, 75990H (2010).

    Article  Google Scholar 

  13. Wolf, S. et al. In Proc. Opt. Fiber Commun. Conf. (OFC) Th5C.1 (2017).

    Google Scholar 

  14. Justice, J. et al. Nat. Photon. 6, 610–614 (2012).

    Article  ADS  Google Scholar 

  15. Lischke, S. et al. Opt. Express 23, 27213–27220 (2015).

    Article  ADS  Google Scholar 

  16. Soref, R. A. & Bennett, B. R. J. Quant. Electron. QE-23, 123–129 (1987).

    Article  ADS  Google Scholar 

  17. Chen, H.-W., Peters, J. D. & Bowers, J. E. Opt. Express 19, 1455–1460 (2011).

    Article  ADS  Google Scholar 

  18. Huang, Q. et al. Appl. Phys. Lett. 108, 141104 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Witzens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witzens, J. Modulators make efficiency leap. Nature Photon 11, 459–462 (2017). https://doi.org/10.1038/nphoton.2017.127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.127

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing