Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-polarized spin-nanolasers

Abstract

Besides adding a new functionality to conventional lasers, spin-polarized lasers can, potentially, offer lower threshold currents and reach higher emission intensities. However, to achieve spin-polarized lasing emission a material should possess a slow spin relaxation and a high propensity to be injected with spin-polarized currents. These are stringent requirements that, so far, have limited the choice of candidate materials for spin-lasers. Here we show that these requirements can be relaxed by using a new self-polarized spin mechanism. Fe3O4 nanoparticles are coupled to GaN nanorods to form an energy-band structure that induces the selective charge transfer of electrons with opposite spins. In turn, this selection mechanism generates the population imbalance between spin-up and spin-down electrons in the emitter's energy levels without an external bias. Using this principle, we demonstrate laser emission from GaN nanorods with spin polarization up to 28.2% at room temperature under a low magnetic field of 0.35 T. As the spin-selection mechanism relies entirely on the relative energy-band alignment between the iron oxide nanoparticles and the emitter and requires neither optical pumping with circularly polarized light nor electrical pumping with magnetic electrodes, potentially a wide range of semiconductors can be used as spin-nanolasers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of band alignment of spin-down and spin-up electrons between GaN and Fe3O4.
Figure 2
Figure 3: Characteristics of spin-polarized laser action in GaN nanorods filled with Fe3O4 nanoparticles at room temperature.
Figure 4: Characteristics of random laser action in GaN nanorocks filled with Fe3O4 nanoparticles.
Figure 5: Normalized time-resolved photoluminescence spectra of pure GaN nanorods and GaN nanorods filled with Fe3O4 nanoparticles.
Figure 6: Spin-polarized emission spectra under different external biases.

Similar content being viewed by others

References

  1. Datta, S. & Das, B. Electronic anlog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  CAS  Google Scholar 

  2. Prinz, G. A. Magnetoelectronics. Science 282, 1660–1663 (1998).

    Article  CAS  Google Scholar 

  3. Awschalom, D. D., Samarth, N. & Loss, D. Semiconductor Spintronics and Quantum Computation (Springer, 2002).

    Book  Google Scholar 

  4. Hallstein, S. et al. Manifestation of coherent spin precession in stimulated semiconductor emission dynamics. Phys. Rev. B 56, R7076–R7079 (1997).

    Article  CAS  Google Scholar 

  5. Rudolph, J. et al. Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons. Appl. Phys. Lett. 87, 241117 (2005).

    Article  Google Scholar 

  6. Gothgen, C. et al. Analytical model of spin-polarized semiconductor lasers. Appl. Phys. Lett. 93, 042513 (2008).

    Article  Google Scholar 

  7. Holub, M. & Bhattacharya, P. Spin-polarized light-emitting diodes and lasers. J. Phys. D 40, 179–203 (2007).

    Article  Google Scholar 

  8. Holub, M. & Jonker, B. T. Threshold current reduction in spin-polarized lasers: role of strain and valence-band mixing Phys. Rev. B 83, 125309 (2011).

  9. Basu, D. et al. Electrically injected InAsGaAs quantum dot spin-laser operating at 200K. Appl. Phys. Lett. 92, 091119 (2008).

    Article  Google Scholar 

  10. Hovel, S. et al. Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers Appl. Phys. Lett. 92, 041118 (2008).

    Article  Google Scholar 

  11. Basu, D., Saha, D. & Bhattacharya, P. Optical polarization modulation and gain anisotropy in an electrically injected spin-laser. Phys. Rev. Lett. 102, 093904 (2009).

    Article  CAS  Google Scholar 

  12. Li, M. Y. et al. Birefringence controlled room-temperature picosecond spin dynamics close to the threshold of vertical-cavity surface-emitting laser devices. Appl. Phys. Lett. 97, 191114 (2010).

    Article  Google Scholar 

  13. Gerhardt, N. C. et al. Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 99, 15117 (2011).

    Article  Google Scholar 

  14. Boéris, G., Lee, J., Výborný, K. & Žutić, I. Tailoring chirp in spin-lasers. Appl. Phys. Lett. 100, 121111 (2012).

    Article  Google Scholar 

  15. Jonker, B. T. Progress toward electrical injection of spin-polarized electrons into semiconductors. IEEE Proc. 91, 727–740 (2003).

    Article  CAS  Google Scholar 

  16. Blackmond, D. G. The origin of biological homochirality. Phil. Trans. R. Soc. B 366, 2878–2884 (2011).

    Article  CAS  Google Scholar 

  17. Awschalom, D. D., Warnock, J. & von Molnár, S. Low-temperature magnetic spectroscopy of a dilute magnetic semiconductor. Phys. Rev. Lett. 58, 812–815 (1987).

    Article  CAS  Google Scholar 

  18. Gerhardt, N. C. et al. Electron spin injection into GaAs from ferromagnetic contacts in remanence. Appl. Phys. Lett. 87, 032502 (2005).

    Article  Google Scholar 

  19. Oestreich, M. et al. Spin injection, spin transport and spin coherence. Semicond. Sci. Technol. 17, 285–297 (2002).

    Article  CAS  Google Scholar 

  20. Chen, W. M. et al. Efficient spin relaxation in InGaN/GaN and InGaN/GaMnN quantum wells: an obstacle to spin detection. Appl. Phys. Lett. 84, 192107 (2005).

    Article  Google Scholar 

  21. Buyanova, I. A. et al. On the origin of spin loss in GaMnN/InGaN light-emitting diodes. Appl. Phys. Lett. 84, 2599–2601 (2004).

    Article  CAS  Google Scholar 

  22. Fujino, H. et al. Circularly polarized lasing in a (110)-oriented quantum well vertical-cavity surface-emitting laser under optical spin injection. Appl. Phys. Lett. 94, 131108 (2009).

    Article  Google Scholar 

  23. Satoshi, I., Shinji, K., Kazuhiro, I. & Hitoshi, K. Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells. Appl. Phys. Lett. 98, 081113 (2011).

    Article  Google Scholar 

  24. Hu, G. & Suzuki, Y. Negative spin polarization of Fe3O4 in magnetite/manganite-based junctions. Phys. Rev. Lett. 89, 276601 (2002).

    Article  CAS  Google Scholar 

  25. Akira, Y. & Noriaki, H. Electronic structure in high temperature phase of Fe3O4 . J. Phys. Soc. Jpn 68, 1607–1613 (1999).

    Article  Google Scholar 

  26. Tang, J., Myers, M., Bosnick, K. A. & Brus, L. E. Magnetite Fe3O4 nanocrystals: spectroscopic observation of aqueous oxidation kinetics. J. Phys. Chem. B 107, 9501–7506 (2003).

    Google Scholar 

  27. Žutić, I., Jaroslav, F. & Das S. D. Spin-polarized transport in inhomogeneous magnetic semiconductors: theory of magnetic/nonmagnetic p–n junctions. Phys. Rev. Lett. 88, 066603 (2002).

    Article  Google Scholar 

  28. Rinaldi, C. et al. Ge-based spin-photodiodes for room-temperature integrated detection of photon helicity. Adv. Mater. 24, 3037–3041 (2012).

    Article  CAS  Google Scholar 

  29. Puttisong, Y. et al. Efficient room-temperature spin detector based on GaNAs. J. Appl. Phys. 111, 07C303 (2012).

    Article  Google Scholar 

  30. Michael, E. L., Sergey, L. R. & Michael, S. S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (John Wiley & Sons, 2001).

    Google Scholar 

  31. Alvarado, S. F. et al. Observation of spin-polarized electron levels in ferrites. Phys. Rev. Lett. 34, 319–322 (1975).

    Article  CAS  Google Scholar 

  32. Morton, S. A. et al. Spin-resolved photoelectron spectroscopy of Fe3O4 . Surf. Sci. 513, L451–L457 (2002).

    Article  CAS  Google Scholar 

  33. Fonin, M. et al. Surface electronic structure of the Fe3O4(100): evidence of a half-metal to metal transition. Phys. Rev. B 72, 104436 (2005).

    Article  Google Scholar 

  34. Casey, H. C. et al. Low interface trap density for remote plasma deposited SiO2 on n-type GaN. Appl. Phys. Lett. 68, 1850–1852 (1996).

    Article  CAS  Google Scholar 

  35. Camphausen, D. L., Coey, J. M. D. & Chakraverty, B. K. One-electron energy levels in Fe3O4 . Phys. Rev. Lett. 29, 657–660 (1972).

    Article  CAS  Google Scholar 

  36. Kouno, T., Kishino, K. & Sakai, M. Lasing action on whispering gallery mode of self-organized GaN hexagonal microdisk crystal fabricated by RF-plasma-assisted molecular beam epitaxy. IEEE J. Sel. Top. Quant. Electron 47, 1565–1570 (2011).

    Article  CAS  Google Scholar 

  37. Chen, R., Ling, B., Sun, X. W. & Sun, H. D. Room temperature excitonic whispering gallery mode lasing from high-quality hexagonal ZnO microdisks. Adv. Mater. 23, 2199–2204 (2011).

    Article  CAS  Google Scholar 

  38. Wei, C. M., Shih, H. Y., Chen, Y. F. & Lin, T. Y. Optical detection of magnetoelectric effect in the composite consisting of InGaN/GaN multiple quantum wells and FeCo thin film. Appl. Phys. Lett. 98, 131913 (2011).

    Article  Google Scholar 

  39. Gohda, Y. & Oshiyama, A. Intrinsic ferromagnetism due to cation vacancies in Gd-doped GaN: first-principles calculations. Phys. Rev. B 78, 161201 (2008).

    Article  Google Scholar 

  40. Chen, H. M., Chen, Y. F., Lee, M. C. & Feng, M. S. Yellow luminescence in n-type GaN epitaxial films. Phys. Rev. B 56, 6942–6946 (1997).

    Article  CAS  Google Scholar 

  41. Evgeny, Y. T. & Zutic, I. Handbook of Spin Transport and Magnetism (CRC Press, 2011).

    Google Scholar 

  42. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  43. Chen, J. Y. et al. Efficient spin-light emitting diodes based on InGaN/GaN quantum disks at room temperature: a new self-polarized paradigm. Nano Lett. 14, 3130 (2014).

    Article  CAS  Google Scholar 

  44. Liao, C. H. et al. Geometry and composition comparisons between c-plane disc-like and m-plane core-shell InGaN/GaN quantum wells in a nitride nanorod. Opt. Express 20, 15859–15871 (2012).

    Article  CAS  Google Scholar 

  45. Wu, S. H. et al. PEGylated silica nanoparticles encapsulating multiple magnetite nanocrystals for high-performance microscopic magnetic resonance angiography. J. Biomed. Mater. Res. 98B, 81–88 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Council and the Ministry of Education of the Republic of China. We thank W. Chen and C-Y. Mou for providing the Fe3O4 nanoparticles, and C-H. Liao and C-C. Yang for the fabrication of GaN nanomaterials.

Author information

Authors and Affiliations

Authors

Contributions

J-Y.C. and Y-F.C. conceived the idea of spin self-polarized nanocomposites and designed the experiments. J-Y.C., T-M.W. and C-W.C. fabricated and measured the samples. All the authors were involved in analysing the data and writing the manuscript.

Corresponding author

Correspondence to Yang-Fang Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 947 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JY., Wong, TM., Chang, CW. et al. Self-polarized spin-nanolasers. Nature Nanotech 9, 845–850 (2014). https://doi.org/10.1038/nnano.2014.195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing