Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunable doping of a metal with molecular spins

Abstract

The mutual interaction of localized magnetic moments and their interplay with itinerant conduction electrons in a solid are central to many phenomena in condensed-matter physics, including magnetic ordering and related many-body phenomena such as the Kondo effect1, the Ruderman–Kittel–Kasuya–Yoshida interaction2 and carrier-induced ferromagnetism in diluted magnetic semiconductors3. The strength and relative importance of these spin phenomena are determined by the magnitude and sign of the exchange interaction between the localized magnetic moments and also by the mean distance between them. Detailed studies of such systems require the ability to tune the mean distance between the localized magnetic moments, which is equivalent to being able to control the concentration of magnetic impurities in the host material. Here, we present a method for doping a gold film with localized magnetic moments that involves depositing a monolayer of a metal terpyridine complex onto the film. The metal ions in the complexes can be cobalt or zinc, and the concentration of magnetic impurities in the gold film can be controlled by varying the relative amounts of cobalt complexes (which carry a spin) and zinc complexes (which have zero spin). Kondo and weak localization measurements demonstrate that the magnetic impurity concentration can be systematically varied up to 800 ppm without any sign of inter-impurity interaction. Moreover, we find no evidence for the unwanted clustering that is often produced when using alternative methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Kondo effect for different concentrations of impurities.
Figure 2: Tunable molecular spin doping.
Figure 3: Magnetoresistance and weak localization.

Similar content being viewed by others

References

  1. Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).

    Article  CAS  Google Scholar 

  2. Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).

    Article  CAS  Google Scholar 

  3. Dietl, T. & Ohno, H. Engineering magnetism in semiconductors. Mater. Today 9, 18–26 (November 2006).

    Article  CAS  Google Scholar 

  4. Bergmann, G. in 50 Years of Anderson Localization (ed. Abrahams, E.) (World Scientific, 2010).

  5. Loram, J. W., Whall, T. E. & Ford, P. J. Resistivity of some CuAuFe alloys. Phys. Rev. B 2, 857–874 (1970).

    Article  Google Scholar 

  6. De Boer, B., Hadipour, A., Mandoc, M. M., van Woudenbergh, T. & Blom, P. W. M. Tuning of metal work functions with self-assembled monolayers. Adv. Mater. 17, 621–625 (2005).

    Article  CAS  Google Scholar 

  7. Chen, W., Qi, D., Gao, X. & Wee, A. T. S. Surface transfer doping of semiconductors. Prog. Surf. Sci. 84, 279–321 (2009).

    Article  CAS  Google Scholar 

  8. Smits, E. C. P. et al. Bottom-up organic integrated circuits. Nature 455, 956–959 (2008).

    Article  CAS  Google Scholar 

  9. Lee, B. et al. Modification of electronic properties of graphene with self-assembled monolayers. Nano Lett. 10, 2427–2432 (2010).

    Article  CAS  Google Scholar 

  10. Ho, J. C. et al. Controlled nanoscale doping of semiconductors via molecular monolayers. Nature Mater. 7, 62–67 (2008).

    Article  CAS  Google Scholar 

  11. Voorthuijzen, W. P., Yilmaz, M. D., Naber, W. J. M., Huskens, J. & van der Wiel, W. G. Local doping of silicon using nanoimprint lithography and molecular monolayers. Adv. Mater. 23, 1346–1350 (2011).

    Article  CAS  Google Scholar 

  12. Kremer, S., Henke, W. & Reinen, D. High-spin–low-spin equilibria of cobalt(2+) in the terpyridine complexes Co(terpy)2X2.nH2O. Inorg. Chem. 21, 3013–3022 (1982).

    Article  CAS  Google Scholar 

  13. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    Article  CAS  Google Scholar 

  14. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).

    Article  CAS  Google Scholar 

  15. Li, J. T., Schneider, W. D., Berndt, R. & Delley, B. Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80, 2893–2896 (1998).

    Article  CAS  Google Scholar 

  16. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).

    Article  CAS  Google Scholar 

  17. Van der Wiel, W. G. et al. The Kondo effect in the unitary limit. Science 289, 2105–2108 (2000).

    Article  CAS  Google Scholar 

  18. Altshuler, E. L., Altshuler, B. L. & Aronov, A. G. Quasielastic electron electron-scattering and anomalous magnetoresistance. Solid. State. Commun. 54, 617–620 (1985).

    Article  Google Scholar 

  19. Chen, G. & Giordano, N. Thickness dependence of the Kondo effect in AuFe films. Phys. Rev. Lett. 66, 209–211 (1991).

    Article  CAS  Google Scholar 

  20. Costi, T. A., Hewson, A. C. & Zlatic, V. Transport-coefficients of the anderson model via the numerical renormalization-group. J. Phys. Condens. Matter 6, 2519–2558 (1994).

    Article  CAS  Google Scholar 

  21. Mallet, F. et al. Scaling of the low-temperature dephasing rate in Kondo systems. Phys. Rev. Lett. 97, 226804 (2006).

    Article  CAS  Google Scholar 

  22. Bauerle, C. et al. Experimental test of the numerical renormalization-group theory for inelastic scattering from magnetic impurities. Phys. Rev. Lett. 95, 226805 (2005).

    Article  Google Scholar 

  23. Hamann, D. R. New solution for exchange scattering in dilute alloys. Phys. Rev. 158, 570–580 (1967).

    Article  CAS  Google Scholar 

  24. Taylor, P. L. & Heinonen, O. A Quantum Approach to Condensed Matter Physics (Cambridge Univ. Press, 2002).

  25. Mordijck, A., Deckers, I. & Labro, M. Transition in the overcompensated multichannel Kondo alloy Au–V—susceptibility and resistivity data. J. Magn. Magn. Mater. 104, 2081–2082 (1992).

    Article  Google Scholar 

  26. Wei, W., Rosenbaum, R. & Bergmann, G. Magnetic scattering in AuCo and AgCo with weak localization. Phys. Rev. B 39, 4568–4571 (1989).

    Article  CAS  Google Scholar 

  27. Birge, N. O. et al. Kondo Effect and Dephasing in Low-Dimensional Metallic Systems (Kluwer Academic, 2000).

  28. Dumpich, G. & Carl, A. Anomalous temperature-dependence of the phase-coherence length for inhomogeneous gold-films. Phys. Rev. B 43, 12074–12077 (1991).

    Article  CAS  Google Scholar 

  29. Hikami, S., Larkin, A. I. & Nagaoka, Y. Spin–orbit interaction and magnetoresistance in the 2 dimensional random system. Prog. Theor. Phys. 63, 707–710 (1980).

    Article  Google Scholar 

  30. Maskus, M. & Abruna, H. D. Synthesis and characterization of redox-active metal complexes sequentially self-assembled onto gold electrodes via a new thiol-terpyridine ligand. Langmuir 12, 4455–4462 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank W.J.M. Naber, R.M.J. van Damme, A. Brinkman, C.A. Nijhuis and C. Bäuerle for discussions. We acknowledge financial support from the ERC (grant no. 240433), the NWO VIDI programme (grant nos 07580 and 10246) and the NWO-CW ECHO programme (grant no. 700.55.029).

Author information

Authors and Affiliations

Authors

Contributions

T.G., D.A. and S.K.B. carried out the experiments, fabricated the devices and performed the data analysis. M.D.Y. synthesized the organometallic complexes and prepared the monolayers. E.S. assisted with data analysis. W.G.v.d.W. conceived the experiments, and planned and supervised the project. J.H. supervised the chemical synthesis. A.H.V. supervised the synthesis and characterization of the molecules. M.P.d.J. contributed to planning and supervision. All authors discussed the results, provided important insights and helped with the writing of the manuscript.

Corresponding authors

Correspondence to J. Huskens or W. G. van der Wiel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 542 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gang, T., Yilmaz, M., Ataç, D. et al. Tunable doping of a metal with molecular spins. Nature Nanotech 7, 232–236 (2012). https://doi.org/10.1038/nnano.2012.1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing