Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

One- and two-dimensional photonic crystal microcavities in single crystal diamond

Abstract

Diamond is an attractive material for photonic quantum technologies because its colour centres have a number of outstanding properties, including bright single photon emission and long spin coherence times. To take advantage of these properties it is favourable to directly fabricate optical microcavities in high-quality diamond samples. Such microcavities could be used to control the photons emitted by the colour centres or to couple widely separated spins. Here, we present a method for the fabrication of one- and two-dimensional photonic crystal microcavities with quality factors of up to 700 in single crystal diamond. Using a post-processing etching technique, we tune the cavity modes into resonance with the zero phonon line of an ensemble of silicon-vacancy colour centres, and we measure an intensity enhancement factor of 2.8. The controlled coupling of colour centres to photonic crystal microcavities could pave the way to larger-scale photonic quantum devices based on single crystal diamond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM images of two-dimensional and one-dimensional fabricated PhC cavities.
Figure 2: Photoluminescence spectra.
Figure 3: Cavity tuning.

Similar content being viewed by others

References

  1. Ladd, T. et al. Quantum computers. Nature 464, 45–53, (2010).

    Article  CAS  Google Scholar 

  2. Neumann, P. et al. Quantum register based on coupled electron spins in a room-temperature solid. Nature Phys. 6, 249–253 (2010).

    Article  CAS  Google Scholar 

  3. Benjamin, S. C., Lovett, B. W. & Smith, J. M. Prospects for measurement-based quantum computing with solid state spins. Laser Photon. Rev. 3, 556–574 (2009).

    Article  CAS  Google Scholar 

  4. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    Article  CAS  Google Scholar 

  5. Noda, S., Fujita, M. & Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon. 1, 449–458 (2007).

    Article  CAS  Google Scholar 

  6. Su, C-H., Greentree, A. D. & Hollenberg, L. C. L. Towards a picosecond transform-limited nitrogen-vacancy based single photon source. Opt. Express 16, 6240–6250 (2008).

    Article  CAS  Google Scholar 

  7. Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    Article  CAS  Google Scholar 

  8. Aharonovich, I. et al. Two-level ultrabright single photon emission from diamond nanocrystals. Nano Lett. 9, 3191–3195 (2009).

    Article  CAS  Google Scholar 

  9. Neu, E. et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys. 13, 025012 (2011).

    Article  Google Scholar 

  10. Young, A. et al. Cavity enhanced spin measurement of the ground state spin of an NV center in diamond. New J. Phys. 11, 013007 (2009).

    Article  Google Scholar 

  11. Childress, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006).

    Article  CAS  Google Scholar 

  12. Greentree, A. D., Fairchild, B. A., Hossain, F. M. & Prawer, S. Diamond integrated quantum photonics. Mater. Today 11, 22–31 (September 2008).

    Article  CAS  Google Scholar 

  13. Tomljenovic-Hanic, S., Steel, M. J., Sterke, C. M. & Salzman, J. Diamond based photonic crystal microcavities. Opt. Express 14, 3556–3562 (2006).

    Article  CAS  Google Scholar 

  14. Kreuzer, C., Riedrich-Möller, J., Neu, E. & Becher, C. Design of photonic crystal microcavities in diamond films. Opt. Express 16, 1632–1644 (2008).

    Article  Google Scholar 

  15. Riedrich-Möller, J., Neu, E. & Becher, C. Design of microcavities in diamond-based photonic crystals by Fourier- and real-space analysis of cavity fields. Photon. Nanostruct. Fund. Appl. 8, 150–162 (2010).

    Article  Google Scholar 

  16. Bayn, I. & Salzman, J. High-Q photonic crystal nanocavities on diamond for quantum electrodynamics. Eur. Phys. J. Appl. Phys. 37, 19–24 (2007).

    Article  CAS  Google Scholar 

  17. Tomljenovic-Hanic, S., Greentree, A. D., de Sterke, C. M. & Prawer, S. Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs. Opt. Express 17, 6465–6475 (2009).

    Article  CAS  Google Scholar 

  18. Babinec, T. M., Choy, J. T., Smith, K. J. M., Khan, M. & Lončar, M. Design and focused ion beam fabrication of single crystal diamond nanobeam cavities. J. Vac. Sci. Technol. B 29, 010601 (2011).

    Article  Google Scholar 

  19. Park, Y-S., Cook, A. K. & Wang, H. Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075–2079 (2006).

    Article  CAS  Google Scholar 

  20. Schietinger, S., Schröder, T. & Benson, O. One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator. Nano Lett. 8, 3911–3915 (2008).

    Article  CAS  Google Scholar 

  21. Barclay, P. E., Santori, C., Fu, K-M., Beausoleil, R. G. & Painter, O. Coherent interference effects in a nano-assembled diamond NV center cavity–QED system. Opt. Express 17, 8081–8097 (2009).

    Article  CAS  Google Scholar 

  22. Barclay, P. E., Fu, K-M. C., Santori, C. & Beausoleil, R. G. Chip-based microcavities coupled to NV centers in single crystal diamond. Appl. Phys. Lett. 95, 191115 (2009).

    Article  Google Scholar 

  23. Fu, K-M., Barclay, P., Santori, C., Faraon, A. & Beausoleil, R. Low-temperature tapered-fiber probing of diamond NV ensembles coupled to GaP microcavities. New J. Phys. 13, 055023 (2011).

    Article  Google Scholar 

  24. Wolters, J. et al. Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Appl. Phys. Lett. 97, 141108 (2010).

    Article  Google Scholar 

  25. Englund, D. et al. Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010).

    Article  CAS  Google Scholar 

  26. Van der Sar, T. et al. Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system. Appl. Phys. Lett. 98, 193103 (2011).

    Article  Google Scholar 

  27. Shen, Y., Sweeney, T. M. & Wang, H. Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals. Phys. Rev. B 77, 033201 (2008).

    Article  Google Scholar 

  28. Santori, C. et al. Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond. Nanotechnology 21, 274008 (2010).

    Article  CAS  Google Scholar 

  29. Tamarat, P. et al. Stark shift control of single optical centers in diamond. Phys. Rev. Lett. 97, 083002 (2006).

    Article  Google Scholar 

  30. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    Article  CAS  Google Scholar 

  31. Wang, C. F. et al. Observation of whispering gallery modes in nanocrystalline diamond microdisks. Appl. Phys. Lett. 90, 081110 (2007).

    Article  Google Scholar 

  32. Wang, C. F. et al. Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond. Appl. Phys. Lett. 91, 201112 (2007).

    Article  Google Scholar 

  33. Fairchild, B. A. et al. Fabrication of ultrathin single-crystal diamond membranes. Adv. Mater. 20, 1–6 (2008).

    Article  Google Scholar 

  34. Bayn, I., Meyler, B., Salzman, J. & Kalish, R. Triangular nanobeam photonic cavities in single crystal diamond. New J. Phys. 13, 025018 (2011).

    Article  Google Scholar 

  35. Bayn, I. et al. Processing of photonic crystal nanocavity for quantum information in diamond. Diamond Relat. Mater. 20, 937–943 (2011).

    Article  CAS  Google Scholar 

  36. Faraon, A., Barclay, P. E., Santori, C., Fu, K-M. C. & Beausoleil, R. G. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nature Photon. 5, 301–305 (2011).

    Article  CAS  Google Scholar 

  37. Gsell, S., Bauer, T., Goldfuß, J., Schreck, M. & Stritzker, B. A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers. Appl. Phys. Lett. 84, 4541–4543 (2004).

    Article  CAS  Google Scholar 

  38. Meijer, J. et al. Towards the implanting of ions and positioning of nanoparticles with nm spatial resolution. Appl. Phys. A 91, 567–571 (2008).

    Article  CAS  Google Scholar 

  39. Quan, Q., Deotare, P. B. & Lončar, M. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Appl. Phys. Lett. 96, 203102 (2010).

    Article  Google Scholar 

  40. Akahane, Y., Asano, T., Song, B-S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    Article  CAS  Google Scholar 

  41. Kim, S-H. et al. Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab. J. Appl. Phys. 95, 411–416 (2004).

    Article  CAS  Google Scholar 

  42. Hennessy, K. et al. Tuning photonic crystal nanocavity modes by wet chemical digital etching. Appl. Phys. Lett. 87, 021108 (2005).

    Article  Google Scholar 

  43. Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S. O. & Gogotsi, Y. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128, 11635–11642 (2006).

    Article  CAS  Google Scholar 

  44. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  CAS  Google Scholar 

  45. Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    Article  CAS  Google Scholar 

  46. Prawer, S. & Greentree, A. D. Diamond for quantum computing. Science 320, 1601–1602 (2008).

    Article  CAS  Google Scholar 

  47. Schreck, M., Hörmann, F., Roll, H., Lindner, J. K. N. & Stritzker, B. Diamond nucleation on iridium buffer layers and subsequent textured growth: a route for the realization of single-crystal diamond films. Appl. Phys. Lett. 78, 192–194 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge helpful discussions with D. Englund. The authors also thank J. Schmauch for SEM and TEM analysis, C. Zeitz for atomic force microscopy measurements, F. Soldera for assistance with FIB milling, T. Jung for fabrication tolerance analysis, K. Kretsch for assistance with wet chemical etching, S. Griesing for sputtering of metal layers, and S. Grandthyll for ellipsometry measurements. This work was financially supported by the BMBF (network EPHQAM, contract no. 01Bl0903).

Author information

Authors and Affiliations

Authors

Contributions

J.R-M. and L.K. fabricated the photonic crystals, performed the experiments and carried out the numerical modelling of the structures. M.F., S.G. and M.S. developed the CVD growth process for the diamond films on iridium buffer layers. A.B. and M.W. prepared the diamond membrane. J.R-M. and S.W. thinned the diamond film. C.P., J.R-M., L.K. and F.M. performed FIB milling. C.H. and E.N. contributed experimental tools and helped with the photoluminescence measurements and interpretation of data. C.B. conceived and designed the experiments. J.R-M. and C.B. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Christoph Becher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3963 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedrich-Möller, J., Kipfstuhl, L., Hepp, C. et al. One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nature Nanotech 7, 69–74 (2012). https://doi.org/10.1038/nnano.2011.190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.190

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing