Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Imaging and manipulating the spin direction of individual atoms

Abstract

Single magnetic atoms on surfaces are the smallest conceivable units for two-dimensional magnetic data storage. Previous experiments on such systems have investigated magnetization curves1,2, the many-body Kondo effect3,4 and magnetic excitations in quantum spin systems5,6, but a stable magnetization has not yet been detected for an atom on a non-magnetic surface in the absence of a magnetic field. The spin direction of a single magnetic atom can be fixed by coupling it to an underlying magnetic substrate via the exchange interaction7,8, but it is then difficult to differentiate between the magnetism of the atom and the surface. Here, we take advantage of the orbital symmetry of the spin-polarized density of states of single cobalt atoms to unambiguously determine their spin direction in real space using a combination of spin-resolved scanning tunnelling microscopy experiments and ab initio calculations. By laterally moving atoms on our non-collinear magnetic template9, the spin direction can also be controlled while maintaining magnetic sensitivity, thereby providing an approach for constructing and characterizing artificial atomic-scale magnetic structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SP-STM measurements of single cobalt atoms on one atomic layer of manganese on W(110), with a tip sensitive to the out-of-plane magnetization.
Figure 2: Calculated spin-resolved local density of states of a cobalt atom on Mn/W(110).
Figure 3: SP-STM images showing cobalt atoms changing symmetry when moved to adjacent sites.
Figure 4: Chain of cobalt atoms constructed by atom manipulation while maintaining spin resolution measured with an up and down magnetized tip.

Similar content being viewed by others

References

  1. Gambardella, P. et al. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130–1133 (2003).

    Article  CAS  Google Scholar 

  2. Meier, F., Zhou, L., Wiebe, J. & Wiesendanger, R. Revealing magnetic interactions from single-atom magnetization curves. Science 320, 82–86 (2008).

    Article  CAS  Google Scholar 

  3. Li, J., Schneider, W.-D., Berndt, R. & Delley, B. Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80, 2893–2896 (1998).

    Article  CAS  Google Scholar 

  4. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).

    Article  CAS  Google Scholar 

  5. Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    Article  CAS  Google Scholar 

  6. Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).

    Article  CAS  Google Scholar 

  7. Yayon, Y., Brar, V. W., Senapati, L., Erwin, S. C. & Crommie, M. F. Observing spin polarization of individual magnetic adatoms. Phys. Rev. Lett. 99, 067202 (2007).

    Article  CAS  Google Scholar 

  8. Iacovita, C. et al. Visualizing the spin of individual cobalt–phthalocyanine molecules. Phys. Rev. Lett. 101, 116602 (2008).

    Article  CAS  Google Scholar 

  9. Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).

    Article  CAS  Google Scholar 

  10. Heinze, S. et al. Real-space imaging of two-dimensional antiferromagnetism on the atomic scale. Science 288, 1805–1808 (2000).

    Article  CAS  Google Scholar 

  11. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–527 (1990).

    Article  CAS  Google Scholar 

  12. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  13. Zhang, Y. & Yang, W. Comment on ‘generalized gradient approximation made simple’. Phys. Rev. Lett. 80, 890 (1998).

    Article  CAS  Google Scholar 

  14. Calculations were performed using the FLEUR code, http://www.flapw.de

  15. Wortmann, D. et al. Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001).

    Article  CAS  Google Scholar 

  16. Bode, M. et al. Magnetization-direction-dependent local electronic structure probed by scanning tunneling spectroscopy. Phys. Rev. Lett. 89, 237205 (2002).

    Article  CAS  Google Scholar 

  17. Pietzsch, O., Kubetzka, A., Haude, D., Bode, M. & Wiesendanger, R. A low-temperature ultrahigh vacuum scanning tunneling microscope with a split-coil magnet and a rotary motion stepper motor for high spatial resolution studies of surface magnetism. Rev. Sci. Instrum. 71, 424–430 (2000).

    Article  CAS  Google Scholar 

  18. Hla, S.-W., Braun, K.-F. & Rieder, K.-H. Single-atom manipulation mechanisms during a quantum corral construction. Phys. Rev. B 67, 201402(R) (2003).

    Article  Google Scholar 

  19. Horcas, I., Fernandez, R., Gomez-Rodriguez, J. M., Colchero, J., Gomez-Herrero, J. & Baro, A. M. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft (SFB668), the European Union ERC Advanced Grant FURORE, the Landesexzellenzcluster NANOSPINTRONICS, the Stifterverband für die Deutsche Wissenschaft, the Interdisciplinary Nanoscience Center Hamburg (INCH), the Marie Curie program (MEIF-CT-2006-039071) and the National Science Foundation program PIRE (OISE 0730257) is gratefully acknowledged. We appreciate valuable technical support from M. Langer and fruitful discussions with A. Khajetoorians and C. Lazo.

Author information

Authors and Affiliations

Authors

Contributions

D.S. and A.K. provided the experimental concept and performed SP-STM. S.-W.H. and Y.Y. carried out atom manipulation, and M.M. and K.v.B. prepared the samples. P.F. and S.H. conducted DFT calculations. All authors discussed the results and prepared the manuscript.

Corresponding author

Correspondence to Andre Kubetzka.

Supplementary information

Supplementary information

Supplementary information (PDF 584 kb)

Supplementary information

Supplementary movie (AVI 14122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrate, D., Ferriani, P., Yoshida, Y. et al. Imaging and manipulating the spin direction of individual atoms. Nature Nanotech 5, 350–353 (2010). https://doi.org/10.1038/nnano.2010.64

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.64

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing