Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum-dot-assisted characterization of microtubule rotations during cargo transport

Abstract

Owing to their wide spectrum of in vivo functions, motor proteins, such as kinesin-1, show great potential for application as nanomachines in engineered environments. When attached to a substrate surface, these motors are envisioned to shuttle cargo that is bound to reconstituted microtubules—one component of the cell cytoskeleton—from one location to another1,2. One potentially serious problem for such applications is, however, the rotation of the microtubules around their longitudinal axis3,4. Here we explore this issue by labelling the gliding microtubules with quantum dots to simultaneously follow their sinusoidal side-to-side and up-and-down motion in three dimensions with nanometre accuracy. Microtubule rotation, which originates from the kinesin moving along the individual protofilaments of the microtubule, was not impeded by the quantum dots. However, pick-up of large cargo inhibited the rotation but did not affect the velocity of microtubule gliding. Our data show that kinesin-driven microtubules make flexible, responsive and effective molecular shuttles for nanotransport applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of QD-assisted 3D imaging of microtubule rotation.
Figure 2: FLIC microscopy of QDs attached to microtubules driven by kinesin-1.
Figure 3: Determining the direction of rotation using dual-colour FLIC imaging.
Figure 4: Microtubule rotations during pick-up and drop-off of micrometre-sized cargo.

Similar content being viewed by others

References

  1. Hess, H., Bachand, G. D. & Vogel, V. Powering nanodevices with biomolecular motors. Chem. Eur. J. 10, 2110–2116 (2004).

    Article  CAS  Google Scholar 

  2. van den Heuvel, M. G. & Dekker, C. Motor proteins at work for nanotechnology. Science 317, 333–336 (2007).

    Article  CAS  Google Scholar 

  3. Ray, S., Meyhofer, E., Milligan, R. A. & Howard, J. Kinesin follows the microtubule's protofilament axis. J. Cell Biol. 121, 1083–1093 (1993).

    Article  CAS  Google Scholar 

  4. Yajima, J. & Cross, R. A. A torque component in the kinesin-1 power stroke. Nature Chem. Biol. 1, 338–341 (2005).

    Article  CAS  Google Scholar 

  5. Gelles, J., Schnapp, B. J. & Sheetz, M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450–453 (1988).

    Article  CAS  Google Scholar 

  6. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  CAS  Google Scholar 

  7. Seitz, A. & Surrey, T. Processive movement of single kinesins on crowded microtubules visualized using quantum dots. EMBO J. 25, 267–277 (2006).

    Article  CAS  Google Scholar 

  8. Reck-Peterson, S. L. et al. Single-molecule analysis of dynein processivity and stepping behaviour. Cell 126, 335–348 (2006).

    Article  CAS  Google Scholar 

  9. Vale, R. D. et al. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996).

    Article  CAS  Google Scholar 

  10. Yildiz, A., Tomishige, M., Vale, R. D. & Selvin, P. R. Kinesin walks hand-over-hand. Science 303, 676–678 (2004).

    Article  CAS  Google Scholar 

  11. Brunner, C., Wahnes, C. & Vogel, V. Cargo pick-up from engineered loading stations by kinesin driven molecular shuttles. Lab. Chip 7, 1263–1271 (2007).

    Article  CAS  Google Scholar 

  12. Ramachandran, S., Ernst, K. H., Bachand, G. D., Vogel, V. & Hess, H. Selective loading of kinesin-powered molecular shuttles with protein cargo and its application to biosensing. Small 2, 330–334 (2006).

    Article  CAS  Google Scholar 

  13. Block, S. M., Asbury, C. L., Shaevitz, J. W. & Lang, M. J. Probing the kinesin reaction cycle with a 2D optical force clamp. Proc. Natl Acad. Sci. USA 100, 2351–2356 (2003).

    Article  CAS  Google Scholar 

  14. Chan, W. C. et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13, 40–46 (2002).

    Article  CAS  Google Scholar 

  15. Mansson, A. et al. In vitro sliding of actin filaments labelled with single quantum dots. Biochem. Biophys. Res. Commun. 314, 529–534 (2004).

    Article  CAS  Google Scholar 

  16. Bachand, G. D. et al. Assembly and transport of nanocrystal CdSe quantum dot nanocomposites using microtubules and kinesin motor proteins. Nano Lett. 4, 817–821 (2004).

    Article  CAS  Google Scholar 

  17. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometre localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    Article  CAS  Google Scholar 

  18. Lambacher, A. & Fromherz, P. Fluorescence interference-contrast microscopy on oxidized silicon using a monomolecular dye layer. Appl. Phys. A 63, 207–216 (1996).

    Article  Google Scholar 

  19. Kerssemakers, J., Howard, J., Hess, H. & Diez, S. The distance that kinesin-1 holds its cargo from the microtubule surface measured by fluorescence interference contrast microscopy. Proc. Natl Acad. Sci. USA 103, 15812–15817 (2006).

    Article  CAS  Google Scholar 

  20. Nishizaka, T., Yagi, T., Tanaka, Y. & Ishiwata, S. Right-handed rotation of an actin filament in an in vitro motile system. Nature 361, 269–271 (1993).

    Article  CAS  Google Scholar 

  21. Mimori, Y. & Mikinoumura, T. Extrusion of rotating microtubules on the dynein-track from a microtubule–dynein gamma-complex. Cell Motil. Cytoskeleton 30, 17–25 (1995).

    Article  CAS  Google Scholar 

  22. Vale, R. D. & Toyoshima, Y. Y. Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Cell 52, 459–469 (1988).

    Article  CAS  Google Scholar 

  23. Walker, R. A., Salmon, E. D. & Endow, S. A. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347, 780–782 (1990).

    Article  CAS  Google Scholar 

  24. Hyman, A. A., Chretien, D., Arnal, I. & Wade, R. H. Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(alpha, beta)-methylene-diphosphonate. J. Cell Biol. 128, 117–125 (1995).

    Article  CAS  Google Scholar 

  25. Wang, Z. & Sheetz, M. P. The C-terminus of tubulin increases cytoplasmic dynein and kinesin processivity. Biophys. J. 78, 1955–1964 (2000).

    Article  CAS  Google Scholar 

  26. Hancock, W. O. & Howard, J. Processivity of the motor protein kinesin requires two heads. J. Cell Biol. 140, 1395–1405 (1998).

    Article  CAS  Google Scholar 

  27. Hunter, A. W. et al. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol. Cell 11, 445–457 (2003).

    Article  CAS  Google Scholar 

  28. Andreu, J. M. et al. Low resolution structure of microtubules in solution. Synchrotron X-ray scattering and electron microscopy of taxol-induced microtubules assembled from purified tubulin in comparison with glycerol and MAP-induced microtubules. J. Mol. Biol. 226, 169–184 (1992).

    Article  CAS  Google Scholar 

  29. Wade, R. H. & Chretien, D. Cryoelectron microscopy of microtubules. J. Struct. Biol. 110, 1–27 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Bräuer, D. Naumburger and F. Friedrich for technical support, D. Zwicker and Y. Kalaidzidis for help with the tracking algorithms, G. Brouhard for advice on the subtilisin digestion of microtubules, C. Leduc, J. Kerssemakers, J. Helenius, S. Mashaghi and J. Howard for fruitful discussions, and C. Gell and T. Korten for comments on the manuscript. This work was supported by the German Federal Ministry of Education and Research (grant 03 N 8712) and the Max-Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

B.N. and S.D. conceived and designed the experiments. B.N. performed the experiments. F.R. developed the nanometre tracking software. B.N. and F.R. analysed the data. All authors discussed the results. B.N. and S.D. co-wrote the paper.

Corresponding author

Correspondence to Stefan Diez.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nitzsche, B., Ruhnow, F. & Diez, S. Quantum-dot-assisted characterization of microtubule rotations during cargo transport. Nature Nanotech 3, 552–556 (2008). https://doi.org/10.1038/nnano.2008.216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing