Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

All-electric control of donor nuclear spin qubits in silicon

Abstract

The electronic and nuclear spin degrees of freedom of donor impurities in silicon form ultra-coherent two-level systems1,2 that are potentially useful for applications in quantum information3 and are intrinsically compatible with industrial semiconductor processing. However, because of their smaller gyromagnetic ratios, nuclear spins are more difficult to manipulate than electron spins and are often considered too slow for quantum information processing. Moreover, although alternating current magnetic fields are the most natural choice to drive spin transitions and implement quantum gates, they are difficult to confine spatially to the level of a single donor, thus requiring alternative approaches. In recent years, schemes for all-electrical control of donor spin qubits have been proposed4,5 but no experimental demonstrations have been reported yet. Here, we demonstrate a scalable all-electric method for controlling neutral 31P and 75As donor nuclear spins in silicon. Using coplanar photonic bandgap resonators, we drive Rabi oscillations on nuclear spins exclusively using electric fields by employing the donor-bound electron as a quantum transducer, much in the spirit of recent works with single-molecule magnets6. The electric field confinement leads to major advantages such as low power requirements, higher qubit densities and faster gate times. Additionally, this approach makes it possible to drive nuclear spin qubits either at their resonance frequency or at its first subharmonic, thus reducing device bandwidth requirements. Double quantum transitions7 can be driven as well, providing easy access to the full computational manifold of our system and making it convenient to implement nuclear spin-based qudits using 75As donors8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microwave photonic bandgap resonator design and performance.
Figure 2: 28Si sample details.
Figure 3: NMR spectroscopy using either electric or magnetic fields.
Figure 4: Time-domain measurements of the 31P and 75As nuclear spins subject to an electrical drive.

Similar content being viewed by others

References

  1. Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater. 11, 143–147 (2012).

    Article  CAS  Google Scholar 

  2. Morton, J. J. et al. Solid-state quantum memory using the 31P nuclear spin. Nature 455, 1085–1088 (2008).

    Article  CAS  Google Scholar 

  3. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  CAS  Google Scholar 

  4. De, A., Pryor, C. E. & Flatté, M. E. Electric-field control of a hydrogenic donor's spin in a semiconductor. Phys. Rev. Lett. 102, 017603 (2009).

    Article  CAS  Google Scholar 

  5. Tosi, G. et al. Silicon quantum processor with robust long-distance qubit couplings. Preprint at http://arxiv.org/abs/1509.08538 (2015).

  6. Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014).

    Article  CAS  Google Scholar 

  7. Yusa, G., Muraki, K., Takashina, K., Hashimoto, K. & Hirayama, Y. Controlled multiple quantum coherences of nuclear spins in a nanometre-scale device. Nature 434, 1001–1005 (2005).

    Article  CAS  Google Scholar 

  8. Bartlett, S. D., de Guise, H. & Sanders, B. C. Quantum encodings in spin systems and harmonic oscillators. Phys. Rev. A 65, 052316 (2002).

    Article  Google Scholar 

  9. Davies, E. A new pulse ENDOR technique. Phys. Lett. A 47, 1–2 (1974).

    Article  CAS  Google Scholar 

  10. Tyryshkin, A. M., Morton, J. J. L., Ardavan, A. & Lyon, S. A. Davies electron–nuclear double resonance revisited: enhanced sensitivity and nuclear spin relaxation. J. Chem. Phys. 124, 234508 (2006).

    Article  Google Scholar 

  11. Yun, T.-Y. & Chang, K. One-dimensional photonic bandgap resonators and varactor tuned resonators. Microwave Symposium Digest, 1999 IEEE MTT-S International 4, 1629–1632 (1999).

    Article  Google Scholar 

  12. Liu, Y. & Houck, A. A. Quantum electrodynamics near a photonic bandgap. Nat. Phys. 13, 48–52 (2017).

    Article  CAS  Google Scholar 

  13. Bronn, N. T. et al. Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics. Appl. Phys. Lett. 107, 172601 (2015).

    Article  Google Scholar 

  14. Weis, C. D. et al. Electrical activation and electron spin resonance measurements of implanted bismuth in isotopically enriched silicon-28. Appl. Phys. Lett. 100, 172104 (2012).

    Article  Google Scholar 

  15. Ziegler, J. F., Ziegler, M. & Biersack, J. SRIM—the stopping and range of ions in matter (2010). Nuclear Instrum. Methods Phys. Res. B 268, 1818–1823 (2010).

    Article  CAS  Google Scholar 

  16. Sigillito, A. J. et al. Fast, low-power manipulation of spin ensembles in superconducting microresonators. Appl. Phys. Lett. 104, 222407 (2014).

    Article  Google Scholar 

  17. Sigillito, A. J., Tyryshkin, A. M. & Lyon, S. A. Anisotropic Stark effect and electric-field noise suppression for phosphorus donor qubits in silicon. Phys. Rev. Lett. 114, 217601 (2015).

    Article  CAS  Google Scholar 

  18. Malissa, H., Schuster, D. I., Tyryshkin, A. M., Houck, A. A. & Lyon, S. A. Superconducting coplanar waveguide resonators for low temperature pulsed electron spin resonance spectroscopy. Rev. Sci. Instrum. 84, 025116 (2013).

    Article  CAS  Google Scholar 

  19. Wilson, D. K. & Feher, G. Electron spin resonance experiments on donors in silicon. III. Investigation of excited states by the application of uniaxial stress and their importance in relaxation processes. Phys. Rev. 124, 1068–1083 (1961).

    Article  CAS  Google Scholar 

  20. Pica, G. et al. Hyperfine Stark effect of shallow donors in silicon. Phys. Rev. B 90, 195204 (2014).

    Article  Google Scholar 

  21. Laird, E. A. et al. A new mechanism of electric dipole spin resonance: hyperfine coupling in quantum dots. Semicond. Sci. Technol. 24, 064004 (2009).

    Article  Google Scholar 

  22. Romhányi, J., Burkard, G. & Pályi, A. Subharmonic transitions and Bloch–Siegert shift in electrically driven spin resonance. Phys. Rev. B 92, 054422 (2015).

    Article  Google Scholar 

  23. Franke, D. P. et al. Interaction of strain and nuclear spins in silicon: quadrupolar effects on ionized donors. Phys. Rev. Lett. 115, 057601 (2015).

    Article  Google Scholar 

  24. Franke, D. P., Pflüger, M. P. D., Mortemousque, P.-A., Itoh, K. M. & Brandt, M. S. Quadrupolar effects on nuclear spins of neutral arsenic donors in silicon. Phys. Rev. B 93, 161303 (2016).

    Article  Google Scholar 

  25. Pla, J. J. et al. Strain-induced nuclear quadrupole splittings in silicon devices. Preprint at http://arxiv.org/abs/1608.07346 (2016).

  26. Sigillito, A. J. et al. Electron spin coherence of shallow donors in natural and isotopically enriched germanium. Phys. Rev. Lett. 115, 247601 (2015).

    Article  CAS  Google Scholar 

  27. Sigillito, A. J. et al. Large Stark tuning of donor electron spin qubits in germanium. Phys. Rev. B 94, 125204 (2016).

    Article  Google Scholar 

  28. Pica, G. & Lovett, B. W. Quantum gates with donors in germanium. Phys. Rev. B 94, 205309 (2016).

    Article  Google Scholar 

  29. Eichler, C., Sigillito, A. J., Lyon, S. A. & Petta, J. R. Electron spin resonance at the level of 104 spins using low impedance superconducting resonators. Phys. Rev. Lett. 118, 037701 (2017).

    Article  CAS  Google Scholar 

  30. Bienfait, A. et al. Reaching the quantum limit of sensitivity in electron spin resonance. Nat. Nanotech. 11, 253–257 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank G. Pica, J.J.L. Morton and P. Bertet for insightful discussions. Work at Princeton was supported by the NSF through the Princeton MRSEC (grant no. DMR-01420541) and by the ARO (grant bo. W911NF-13-1-0179). Work at LBNL was performed under the auspices of the US Department of Energy under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

A.J.S., A.M.T. and S.A.L. conceived and designed the experiments. A.J.S. and A.A.H. designed the photonic bandgap resonators. T.S. supplied the samples. A.J.S. performed the experiments and modelling. A.J.S., A.M.T. and S.A.L. wrote the paper, with input from all authors.

Corresponding author

Correspondence to Anthony J. Sigillito.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 712 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigillito, A., Tyryshkin, A., Schenkel, T. et al. All-electric control of donor nuclear spin qubits in silicon. Nature Nanotech 12, 958–962 (2017). https://doi.org/10.1038/nnano.2017.154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing