Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Supramolecular systems chemistry

Abstract

The field of supramolecular chemistry focuses on the non-covalent interactions between molecules that give rise to molecular recognition and self-assembly processes. Since most non-covalent interactions are relatively weak and form and break without significant activation barriers, many supramolecular systems are under thermodynamic control. Hence, traditionally, supramolecular chemistry has focused predominantly on systems at equilibrium. However, more recently, self-assembly processes that are governed by kinetics, where the outcome of the assembly process is dictated by the assembly pathway rather than the free energy of the final assembled state, are becoming topical. Within the kinetic regime it is possible to distinguish between systems that reside in a kinetic trap and systems that are far from equilibrium and require a continuous supply of energy to maintain a stationary state. In particular, the latter systems have vast functional potential, as they allow, in principle, for more elaborate structural and functional diversity of self-assembled systems — indeed, life is a prime example of a far-from-equilibrium system. In this Review, we compare the different thermodynamic regimes using some selected examples and discuss some of the challenges that need to be addressed when developing new functional supramolecular systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermodynamic regimes of a chemical system.
Figure 2: Supramolecular systems under thermodynamic control.
Figure 3: Supramolecular systems under kinetic control.
Figure 4: Supramolecular systems under kinetic control.
Figure 5: Far-from-equilibrium supramolecular systems.

Similar content being viewed by others

References

  1. Pross, A. Toward a general theory of evolution: extending Darwinian theory to inanimate matter. J. Syst. Chem. 2, 1 (2011).

    Article  CAS  Google Scholar 

  2. Pascal, R., Pross, A. & Sutherland, J. D. Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics. Open Biol. 3, 130156 (2013).

    Article  Google Scholar 

  3. Pascal, R. & Pross, A. The nature and mathematical basis for material stability in the chemical and biological worlds. J. Syst. Chem. 5, 3 (2014).

    Article  Google Scholar 

  4. Whitesides, G. M. & Ismagilov, R. F. Complexity in chemistry. Science 284, 89–92 (1999).

    Article  CAS  Google Scholar 

  5. Newth, D. & Finnigan, J. Emergence and self-organization in chemistry and biology. Aust. J. Chem. 59, 841–848 (2006).

    Article  CAS  Google Scholar 

  6. Ludlow, R. F. & Otto, S. Systems chemistry. Chem. Soc. Rev. 37, 101–108 (2008).

    Article  CAS  Google Scholar 

  7. Peyralans, J. J. P. & Otto, S. Recent highlights in systems chemistry. Curr. Opin. Chem. Biol. 13, 705–713 (2009).

    Article  CAS  Google Scholar 

  8. Von Kiedrowski, G., Otto, S. & Herdewijn, P. Welcome home systems chemists. J. Syst. Chem. 1, 1 (2010).

    Article  Google Scholar 

  9. Nitschke, J. R. Systems chemistry: molecular networks come of age. Nature 462, 736–738 (2009).

    Article  CAS  Google Scholar 

  10. Gibb, B. C. Teetering towards chaos and complexity. Nature Chem. 1, 17–18 (2009).

    Article  CAS  Google Scholar 

  11. Chichak, K. S. et al. Molecular Borromean rings. Science 304, 1308–1312 (2004).

    Article  CAS  Google Scholar 

  12. De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    Article  CAS  Google Scholar 

  13. Li, J., Nowak, P. & Otto, S. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry. J. Am. Chem. Soc. 135, 9222–9239 (2013).

    Article  CAS  Google Scholar 

  14. Hamieh, S. et al. A “dial-a-receptor” dynamic combinatorial library. Angew. Chem. Int. Ed. 52, 12368–12372 (2013).

    Article  CAS  Google Scholar 

  15. Ponnuswamy, N., Cougnon, F. B. L., Clough, J. M., Dan Pantoş, G. & Sanders, J. K. M. Discovery of an organic trefoil knot. Science 338, 783–785 (2012).

    Article  CAS  Google Scholar 

  16. Du, G., Moulin, E., Jouault, N., Buhler, E. & Giuseppone, N. Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. Angew. Chem. Int. Ed. 51, 12504–12508 (2012).

    Article  CAS  Google Scholar 

  17. Lasic, D. D. Kinetic and thermodynamic effects on the structure and formation of phosphatidylcholine vesicles. Hepatology 13, 1010–1013 (1991).

    Article  CAS  Google Scholar 

  18. Guida, V. Thermodynamics and kinetics of vesicles formation processes. Adv. Colloid Interface Sci. 161, 77–88 (2010).

    Article  CAS  Google Scholar 

  19. Tayebi, L., Vashaee, D. & Parikh, A. N. Stability of uni- and multillamellar spherical vesicles. ChemPhysChem 13, 314–322 (2011).

    Article  Google Scholar 

  20. Stano, P. & Luisi, P. L. Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chem. Commun. 46, 3639–3653 (2010).

    Article  CAS  Google Scholar 

  21. Hanczyc, H. H. & Szostak, J. W. Replicating vesicles as models of primitive cell growth and division. Curr. Opin. Chem. Biol. 8, 660–664 (2004).

    Article  CAS  Google Scholar 

  22. Zepik, H. H. & Walde, P. Achievements and challenges in generating protocell models. ChemBioChem 9, 2771–2772 (2008).

    Article  CAS  Google Scholar 

  23. Loakes, D. & Holliger, P. Darwinian chemistry: towards the synthesis of a simple cell. Mol. BioSyst. 5, 686–694 (2009).

    Article  CAS  Google Scholar 

  24. Takahashi, H. et al. Autocatalytic membrane-amplification on a pre-existing vesicular surface. Chem. Commun. 46, 8791–8793 (2010).

    Article  CAS  Google Scholar 

  25. Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).

    Article  CAS  Google Scholar 

  26. Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nature Chem. 6, 188–195 (2014).

    Article  CAS  Google Scholar 

  27. Tevis, I. D. et al. Self-assembly and orientation of hydrogen-bonded oligothiophene polymorphs at liquid-membrane-liquid interfaces. J. Am. Chem. Soc. 133, 16486–16494 (2011).

    Article  CAS  Google Scholar 

  28. Giri, G. et al. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480, 504–508 (2011).

    Article  CAS  Google Scholar 

  29. Hill, J. P. et al. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science 304, 1481–1483 (2004).

    Article  CAS  Google Scholar 

  30. Würthner, F., Yao, S. & Beginn, U. Highly ordered merocyanine dye assemblies by supramolecular polymerization and hierarchical self-organization. Angew. Chem. Int. Ed. 42, 3247–3250 (2003).

    Article  Google Scholar 

  31. Lohr, A., Lysetska, M. & Würthner, F. Supramolecular stereomutation in kinetic and thermodynamic self-assembly of helical merocyanine dye nanorods. Angew. Chem. Int. Ed. 44, 5071–5074 (2005).

    Article  CAS  Google Scholar 

  32. Hirst, A. R. et al. Biocatalytic induction of supramolecular order. Nature Chem. 2, 1089–1094 (2010).

    Article  CAS  Google Scholar 

  33. Wang, Q. G. et al. Enzymatic hydrogelation to immobilize an enzyme for high activity and stability. Soft Matter 4, 550–553 (2008).

    Article  CAS  Google Scholar 

  34. Boekhoven, J. et al. Catalytic control over supramolecular gel formation. Nature Chem. 5, 433–437 (2013).

    Article  CAS  Google Scholar 

  35. Lohr, A. & Würthner, F. Evolution of homochiral helical dye assemblies: involvement of autocatalysis in the “majority-rules” effect. Angew. Chem. Int. Ed. 47, 1232–1236 (2008).

    Article  CAS  Google Scholar 

  36. Von Kiedrowski, G. A self-replicating hexadeoxynucleotide. Angew. Chem. Int. Ed. 24, 932–935 (1986).

    Article  Google Scholar 

  37. Tjivikua, T., Ballester, P. & Rebek, J. A self-replicating system. J. Am. Chem. Soc. 112, 1249–1250 (1990).

    Article  CAS  Google Scholar 

  38. Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K. & Ghadiri, M. R. A self-replicating peptide. Nature 382, 525–528 (1996).

    Article  CAS  Google Scholar 

  39. Rubinov, B. et al. Transient fibril structures facilitating nonenzymatic self-replication. ACS Nano 6, 7893–7901 (2012).

    Article  CAS  Google Scholar 

  40. Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).

    Article  CAS  Google Scholar 

  41. Malakoutikhah, M. et al. Uncovering the selection criteria for the emergence of multi-building-block replicators from dynamic combinatorial libraries. J. Am. Chem. Soc. 135, 18406–18417 (2013).

    Article  CAS  Google Scholar 

  42. Schulman, R., Yulke, B. & Winfree, E. Robust self-replication of combinatorial information via crystal growth and scission. Proc. Natl Acad. Sci. USA 109, 6405–6410 (2012).

    Article  CAS  Google Scholar 

  43. Fialkowski, M. et al. Principles and implementations of dissipative (dynamic) self-assembly. J. Phys. Chem. B 110, 2482–2496 (2006).

    Article  CAS  Google Scholar 

  44. Klajn, R., Bishop, K. J. M. & Grzybowski, B. A. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc. Natl Acad. Sci. USA 104, 10305–10309 (2007).

    Article  CAS  Google Scholar 

  45. Boekhoven, J. et al. Dissipative self-assembly of a molecular gelator by using a chemical fuel. Angew. Chem. Int. Ed. 49, 4825–4828 (2010).

    Article  CAS  Google Scholar 

  46. Debnath, S., Roy, S. & Ulijn, R. V. Peptide nanofibers with dynamic instability through nonequilibrium biocatalytic assembly. J. Am. Chem. Soc. 135, 16789–16792 (2013).

    Article  CAS  Google Scholar 

  47. Emond, M. et al. Energy propagation through a protometabolism leading to the local emergence of singular stationary concentration profiles. Chem. Eur. J. 18, 14375–14383 (2012).

    Article  CAS  Google Scholar 

  48. Krabbenborg, S. O. Surface Gradients Under Electrochemical Control Ch. 7, PhD thesis, Univ. Twente (2014).

    Book  Google Scholar 

  49. Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    Article  CAS  Google Scholar 

  50. Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nature Nanotech. 10, 70–75 (2015).

    Article  CAS  Google Scholar 

  51. Gasparini, G., Dal Molin, M. & Prins, L. J. Dynamic approaches towards catalyst discovery. Eur. J. Org. Chem. 2010, 2429–2440 (2010).

    Article  Google Scholar 

  52. Fanlo-Virgós, H., Roig Alba, A.-N., Hamieh, S., Colomb-Delsuc, M. & Otto, S. Transient substrate-induced catalyst formation in a dynamic molecular network. Angew. Chem. Int. Ed. 53, 11346–11350 (2014).

    Article  Google Scholar 

  53. Nguyen, R., Allouche, L., Buhler, E. & Giuseppone, N. Dynamic combinatorial evolution within self-replicating supramolecular assemblies. Angew. Chem. Int. Ed. 48, 1093–1096 (2009).

    Article  CAS  Google Scholar 

  54. Del Amo, V. & Philp, D. Integrating replication-based selection strategies in dynamic covalent systems. Chem. Eur. J. 16, 13304–13318 (2010).

    Article  CAS  Google Scholar 

  55. de Greef, T. F. A. & Meijer, E. W. Materials science: Supramolecular polymers. Nature 453, 171–173 (2008).

    Article  CAS  Google Scholar 

  56. Klajn, R., Wesson, P. J., Bishop, K. J. M. & Grzybowski, B. A. Writing self-erasing images using metastable nanoparticle “inks”. Angew. Chem. Int. Ed. 48, 7035–7039 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NWO, the ERC, COST CM1304 and the Dutch Ministry of Education, Culture and Science (Gravitation Program 024.001.035). The authors wish to express their gratitude to M. Colomb-Delsuc for helping with the graphics in Fig. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sijbren Otto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattia, E., Otto, S. Supramolecular systems chemistry. Nature Nanotech 10, 111–119 (2015). https://doi.org/10.1038/nnano.2014.337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.337

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing