Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epitaxial SrTiO3 films with electron mobilities exceeding 30,000 cm2 V−1 s−1

Abstract

The study of quantum phenomena in semiconductors requires epitaxial structures with exceptionally high charge-carrier mobilities1. Furthermore, low-temperature mobilities are highly sensitive probes of the quality of epitaxial layers, because they are limited by impurity and defect scattering. Unlike many other complex oxides, electron-doped SrTiO3 single crystals show high (104 cm2 V−1 s−1) electron mobilities at low temperatures. High-mobility, epitaxial heterostructures with SrTiO3 have recently attracted attention for thermoelectric applications2, field-induced superconductivity3 and two-dimensional (2D) interface conductivity4. Epitaxial SrTiO3 thin films are often deposited by energetic techniques, such as pulsed laser deposition. Electron mobilities in such films are lower than those of single crystals5. In semiconductor physics, molecular beam epitaxy (MBE) is widely established as the deposition method that produces the highest mobility structures1,6,7. It is a low-energetic, high-purity technique that allows for low defect densities and precise control over doping concentrations and location. Here, we demonstrate controlled doping of epitaxial SrTiO3 layers grown by MBE. Electron mobilities in these films exceed those of single crystals. At low temperatures, the films show Shubnikov–de Haas oscillations. These high-mobility SrTiO3 films allow for the study of the intrinsic physics of SrTiO3 and can serve as building blocks for high-mobility oxide heterostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Carrier concentrations of SrTiO3 films as a function of La-dopant concentration.
Figure 2: Carrier concentrations and electron mobilities of homoepitaxial SrTiO3 thin films.
Figure 3: SdH oscillations in homoepitaxial SrTiO3 thin films.

Similar content being viewed by others

References

  1. Stormer, H. L. Nobel lecture: The fractional quantum Hall effect. Rev. Mod. Phys. 71, 875–889 (1999).

    CAS  Google Scholar 

  2. Ohta, H. et al. Giant thermoelectric Seebeck coefficient of two-dimensional electron gas in SrTiO3 . Nature Mater. 6, 129–134 (2007).

    Article  CAS  Google Scholar 

  3. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nature Mater. 7, 855–858 (2008).

    Article  CAS  Google Scholar 

  4. Mannhart, J., Blank, D. H. A., Hwang, H. Y., Millis, A. J. & Triscone, J. M. Two-dimensional electron gases at oxide interfaces. MRS Bull. 33, 1027–1034 (2008).

    Article  CAS  Google Scholar 

  5. Kozuka, Y. et al. Two-dimensional normal-state quantum oscillations in a superconducting heterostructure. Nature 462, 487–490 (2009).

    Article  CAS  Google Scholar 

  6. English, J. H., Gossard, A. C., Stormer, H. L. & Baldwin, K. W. GaAs structures with electron mobility of 5×106cm2 V−1 s−1. Appl. Phys. Lett. 50, 1826–1828 (1987).

    Article  CAS  Google Scholar 

  7. Pfeiffer, L. & West, K. W. The role of MBE in recent quantum Hall effect physics discoveries. Physica E 20, 57–64 (2003).

    Article  CAS  Google Scholar 

  8. Frederikse, H. P. R. & Hosler, W. R. Hall mobility in SrTiO3 . Phys. Rev. 161, 822–827 (1967).

    Article  CAS  Google Scholar 

  9. Tufte, O. N. & Chapman, P. W. Electron mobility in semiconducting strontium titanate. Phys. Rev. 155, 796–802 (1967).

    Article  CAS  Google Scholar 

  10. Herranz, G. et al. High mobility in LaAlO3/SrTiO3 heterostructures: Origin, dimensionality, and perspectives. Phys. Rev. Lett. 98, 216803 (2007).

    Article  CAS  Google Scholar 

  11. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  12. Lee, C., Destry, J. & Brebner, J. L. Optical absorption and transport in semiconducting SrTiO3 . Phys. Rev. B 11, 2299–2310 (1975).

    Article  CAS  Google Scholar 

  13. Zvanut, M. E. et al. An annealing study of an oxygen vacancy related defect in SrTiO3 substrates. J. Appl. Phys. 104, 064122 (2008).

    Article  Google Scholar 

  14. Kozuka, Y., Susaki, T. & Hwang, H. Y. Vanishing Hall coefficient in the extreme quantum limit in photocarrier-doped SrTiO3 . Phys. Rev. Lett. 101, 096601 (2008).

    Article  CAS  Google Scholar 

  15. Ohnishi, T., Shibuya, K., Yamamoto, T. & Lippmaa, M. Defects and transport in complex oxide thin films. J. Appl. Phys. 103, 103703 (2008).

    Article  Google Scholar 

  16. Ohtomo, A. & Hwang, H. Y. Growth mode control of the free carrier density in SrTiO3−δ films. J. Appl. Phys. 102, 083704 (2007).

    Article  Google Scholar 

  17. Eckstein, J. N. & Bozovic, I. High-temperature superconducting multilayers and heterostructures grown by atomic layer-by-layer molecular beam epitaxy. Annu. Rev. Mater. Sci. 25, 679–709 (1995).

    Article  CAS  Google Scholar 

  18. Biegalski, M. D. et al. Critical thickness of high structural quality SrTiO3 films grown on orthorhombic (101) DyScO3 . J. Appl. Phys. 104, 114109 (2008).

    Article  Google Scholar 

  19. Jalan, B., Engel-Herbert, R., Wright, N. J. & Stemmer, S. Growth of high-quality SrTiO3 films using a hybrid molecular beam epitaxy approach. J. Vac. Sci. Technol. A 27, 461–464 (2009).

    Article  CAS  Google Scholar 

  20. Jalan, B., Moetakef, P. & Stemmer, S. Molecular beam epitaxy of SrTiO3 with a growth window. Appl. Phys. Lett. 95, 032906 (2009).

    Article  Google Scholar 

  21. LeBeau, J. M. et al. Stoichiometry optimization of homoepitaxial oxide thin films using X-ray diffraction. Appl. Phys. Lett. 95, 142905 (2009).

    Article  Google Scholar 

  22. Frederikse, H. P. R., Hosler, W. R., Thurber, W. R., Babiskin, J. & Siebenmann, P. G. Shubnikov–de Haas effect in SrTiO3 . Phys. Rev. 158, 775–778 (1967).

    Article  CAS  Google Scholar 

  23. Mattheiss, L. F. Effect of the 110 K phase transition on the SrTiO3 conduction bands. Phys. Rev. B 6, 4740–4753 (1972).

    Article  CAS  Google Scholar 

  24. Uwe, H., Yoshizaki, R., Sakudo, T., Izumi, A. & Uzumaki, T. Conduction band structure of SrTiO3 . Jpn. J. Appl. Phys. 24 (Suppl. 2), 335–337 (1985).

    Article  CAS  Google Scholar 

  25. Gregory, B., Arthur, J. & Seidel, G. Measurements of the Fermi surface of SrTiO3: Nb. Phys. Rev. B 19, 1039–1048 (1979).

    Article  CAS  Google Scholar 

  26. Jalan, B., Cagnon, J., Mates, T. E. & Stemmer, S. Analysis of carbon in SrTiO3 grown by hybrid molecular beam epitaxy. J. Vac. Sci. Technol. A 27, 1365–1368 (2009).

    Article  CAS  Google Scholar 

  27. van der Pauw, L. J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. 13, 1–9 (1958).

    Google Scholar 

  28. Bierwagen, O., Ive, T., Van de Walle, C. G. & Speck, J. S. Causes of incorrect carrier-type identification in van der Pauw–Hall measurements. Appl. Phys. Lett. 93, 242108 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Allen for many useful discussions and T. Mates for help with the SIMS measurements. The work was supported by the US Department of Energy, Basic Energy Sciences (grant no. DE-FG02-02ER45994). O.B. is supported by a grant from the AFSOR (Award #FA9550-08-1-0461—K. Reinhardt, programme manager). B.J. is supported by the UCSB MRL (National Science Foundation award No. DMR 05-20415). This work made use of the MRL Central facilities supported by the MRSEC Program of the National Science Foundation under award No. DMR 05-20415 and of the UCSB Nanofabrication Facility, a part of the NSF-funded NNIN network.

Author information

Authors and Affiliations

Authors

Contributions

B.J. developed the MBE growth process and P.M. grew the films. J.S. and O.B. carried out the transport measurements and data analysis. N.J.W. and R.E.-H. helped with the MBE growth experiments. S.S. assisted with the planning and analysis of the study.

Corresponding authors

Correspondence to Bharat Jalan or Susanne Stemmer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 405 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, J., Moetakef, P., Jalan, B. et al. Epitaxial SrTiO3 films with electron mobilities exceeding 30,000 cm2 V−1 s−1. Nature Mater 9, 482–484 (2010). https://doi.org/10.1038/nmat2750

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing