Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators

Abstract

Dynamics induced by spin-transfer torque is a quickly developing topic in modern magnetism, which has initiated several new approaches to magnetic nanodevices1,2,3,4,5,6,7,8,9,10,11. It is now well established that a spin-polarized electric current injected into a ferromagnetic layer through a nanocontact exerts a torque on the magnetization, leading to microwave-frequency precession detectable through the magnetoresistance effect. This phenomenon provides a way for the realization of tunable nanometre-size microwave oscillators, the so-called spin-torque nano-oscillators3,4,6 (STNOs). Present theories of STNOs are mainly based on pioneering works12,13 predicting emission of spin waves due to the spin torque. Despite intense experimental studies, until now this spin-wave emission has not been observed. Here, we report the first experimental observation and two-dimensional mapping of spin waves emitted by STNOs. We demonstrate that the emission is strongly directional, and the direction of the spin-wave propagation is steerable by the magnetic field. The information about the emitted spin waves obtained in our measurements is of key importance for the understanding of the physics of STNOs, and for the implementation of coupling between individual oscillators mediated by spin waves9,10,11,14. Analysis shows that the observed directional emission is a general property inherent to any dynamical system with strongly anisotropic dispersion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Layout and characterization of the dynamical properties of STNOs.
Figure 2: Normalized colour-coded intensity maps of spin waves emitted by the STNOs.
Figure 3: Spectral characterization of the spin-wave emission.
Figure 4: Analysis of the relationship between the spin-wave spectrum and the spin-wave emission.

Similar content being viewed by others

References

  1. Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    Article  CAS  Google Scholar 

  2. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current driven magnetization reversal and spin wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 4212–4215 (2000).

    Article  Google Scholar 

  3. Tsoi, M. et al. Generation and detection of phase-coherent current-driven magnons in magnetic multilayers. Nature 406, 46–48 (2000).

    Article  CAS  Google Scholar 

  4. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  CAS  Google Scholar 

  5. Urazhdin, S., Birge, N. O., Pratt, W. P. Jr & Bass, J. Current-driven magnetic excitations in permalloy-based multilayer nanopillars. Phys. Rev. Lett. 91, 146803 (2003).

    Article  CAS  Google Scholar 

  6. Rippard, W. H., Pufall, M. R., Kaka, S., Russek, S. E. & Silva, T. J. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 27201 (2004).

    Article  CAS  Google Scholar 

  7. Covington, M., Al Haj Darwish, M., Ding, Y., Gokemeijer, N. J. & Seigler, M. Current-induced magnetization dynamics in current perpendicular to the plane spin valves. Phys. Rev. B 69, 184406 (2004).

    Article  Google Scholar 

  8. Krivorotov, I. N. et al. Time domain measurements of nanomagnet dynamics driven by spin-transfer torques. Science 307, 228–231 (2005).

    Article  CAS  Google Scholar 

  9. Mancoff, F. B., Rizzo, N. D., Engel, B. N. & Tehrani, S. Phase-locking in double-point-contact spin-transfer devices. Nature 437, 389–392 (2005).

    Article  Google Scholar 

  10. Kaka, S. et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389–392 (2005).

    Article  CAS  Google Scholar 

  11. Pufall, M. R., Rippard, W. H., Russek, S. E., Kaka, S. & Katine, J. A. Electrical measurement of spin-wave interactions of proximate spin transfer nanooscillators. Phys. Rev. Lett. 97, 087206 (2006).

    Article  CAS  Google Scholar 

  12. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  13. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  CAS  Google Scholar 

  14. Slavin, A. Microwave sources: Spin-torque oscillators get in phase. Nature Nanotechnol. 4, 479–480 (2009).

    CAS  Google Scholar 

  15. Slavin, A. & Tiberkevich, V. Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95, 237201 (2005).

    Article  Google Scholar 

  16. Hoefer, M. A., Ablowitz, M. J., Ilan, B., Pufall, M. R. & Silva, T. J. Theory of magnetodynamics induced by spin torque in perpendicularly magnetized thin films. Phys. Rev. Lett. 95, 267206 (2005).

    Article  CAS  Google Scholar 

  17. Consolo, G. et al. Micromagnetic study of the above-threshold generation regime in a spin-torque oscillator based on a magnetic nanocontact magnetized at an arbitrary angle. Phys. Rev. B 78, 014420 (2008).

    Article  Google Scholar 

  18. Hoefer, M. A., Silva, T. J. & Stiles, M. D. Model for a collimated spin-wave beam generated by a single-layer spin torque nanocontact. Phys. Rev. B 77, 144401 (2008).

    Article  Google Scholar 

  19. Chen, X. & Victora, R. H. Phase locking of spin-torque oscillators by spin-wave interactions. Phys. Rev. B 79, 180402(R) (2009).

    Article  Google Scholar 

  20. Berkov, D. V. & Gorn, N. L. Spin-torque driven magnetization dynamics in a nanocontact setup for low external fields: Numerical simulation study. Phys. Rev. B 80, 064409 (2009).

    Article  Google Scholar 

  21. Demidov, V. E., Demokritov, S. O., Hillebrands, B., Laufenberg, M. & Freitas, P. P. Radiation of spin waves by a single micrometre-sized magnetic element. Appl. Phys. Lett. 85, 2866–2868 (2004).

    Article  CAS  Google Scholar 

  22. Demokritov, S. O. & Demidov, V. E. Micro-Brillouin light scattering spectroscopy of magnetic nanostructures. IEEE Trans. Magn. 44, 6–12 (2008).

    Article  CAS  Google Scholar 

  23. Demidov, V. E. et al. Magnon kinetics and Bose–Einstein condensation studied in phase space. Phys. Rev. Lett. 101, 257201 (2008).

    Article  CAS  Google Scholar 

  24. Kalinikos, B. A. Excitation of propagating spin waves in ferromagnetic films. IEE Proc. H 127, 4 (1980).

    CAS  Google Scholar 

  25. Kalinikos, B. A. & Slavin, A. N. Theory of dipole-exchange spin-wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C 19, 7013 (1986).

    Article  Google Scholar 

  26. Ascroft, N. W. & Mermin, N. D. Solid State Physics Ch. 12 (Saunders College, 1976).

    Google Scholar 

  27. Northrop, G. A. & Wolfe, J. P. Ballistic phonon imaging in germanium. Phys. Rev. B 22, 6196–6212 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from Deutsche Forschungsgemeinschaft, the European Project Master (No. NMP-FP7 212257), NSF, the Research Corporation and the WVNano initiative.

Author information

Authors and Affiliations

Authors

Contributions

V.E.D. carried out measurements and data analysis, S.U. fabricated the samples and S.O.D. formulated the experimental approach and designed the measurement instrumentation. All authors co-wrote the manuscript.

Corresponding author

Correspondence to Vladislav E. Demidov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demidov, V., Urazhdin, S. & Demokritov, S. Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nature Mater 9, 984–988 (2010). https://doi.org/10.1038/nmat2882

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2882

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing