Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus

Abstract

Successful engineering of load-bearing tissues requires recapitulation of their complex mechanical functions. Given the intimate relationship between function and form, biomimetic materials that replicate anatomic form are of great interest for tissue engineering applications. However, for complex tissues such as the annulus fibrosus, scaffolds have failed to capture their multi-scale structural hierarchy. Consequently, engineered tissues have yet to reach functional equivalence with their native counterparts. Here, we present a novel strategy for annulus fibrosus tissue engineering that replicates this hierarchy with anisotropic nanofibrous laminates seeded with mesenchymal stem cells. These scaffolds directed the deposition of an organized, collagen-rich extracellular matrix that mimicked the angle-ply, multi-lamellar architecture and achieved mechanical parity with native tissue after 10 weeks of in vitro culture. Furthermore, we identified a novel role for inter-lamellar shearing in reinforcing the tensile response of biologic laminates, a mechanism that has not previously been considered for these tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication of bi-lamellar tissue constructs.
Figure 2: Elaboration of extracellular matrix within bilayers seeded with MSCs.
Figure 3: Angle-ply collagen alignment and orientation.
Figure 4: Relating inter-lamellar mechanics with the tensile response of biologic laminates.
Figure 5: A novel mechanism for tensile reinforcement by inter-lamellar shearing of biologic laminates.

Similar content being viewed by others

References

  1. Cassidy, J. J., Hiltner, A. & Baer, E. Hierarchical structure of the intervertebral disc. Connect. Tissue Res. 23, 75–88 (1989).

    Article  CAS  Google Scholar 

  2. Elliott, D. M. & Setton, L. A. Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: Experimental measurement and material model predictions. J. Biomech. Eng. 123, 256–263 (2001).

    Article  CAS  Google Scholar 

  3. Hukins, D. W. Tissue engineering: A live disc. Nature Mater. 4, 881–882 (2005).

    Article  CAS  Google Scholar 

  4. Kandel, R. A., Roberts, S. & Urban, J. Tissue engineering and the intervertebral disc: The challenges. Eur. Spine J. 17, S480–S491 (2008).

    Article  Google Scholar 

  5. Place, E. S., George, J. H., Williams, C. K. & Stevens, M. M. Synthetic polymer scaffolds for tissue engineering. Chem. Soc. Rev. 38, 1139–1151 (2009).

    Article  CAS  Google Scholar 

  6. Mauck, R. L. et al. Engineering on the straight and narrow: The mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration. Tissue Eng. B 15, 171–193 (2009).

    Article  CAS  Google Scholar 

  7. Chiba, K., Andersson, G. B. J., Masuda, K. & Thonar, E. J. M. A. Metabolism of the extracellular matrix formed by intervertebral disc cells cultured in alginate. Spine 22, 2885–2893 (1997).

    Article  CAS  Google Scholar 

  8. Thonar, E., An, H. & Masuda, K. Compartmentalization of the matrix formed by nucleus pulposus and annulus fibrosus cells in alginate gel. Biochem. Soc. Trans. 30, 874–878 (2002).

    Article  CAS  Google Scholar 

  9. Chou, A. I., Reza, A. T. & Nicoll, S. B. Distinct intervertebral disc cell populations adopt similar phenotypes in three-dimensional culture. Tissue Eng. A 14, 2079–2087 (2008).

    CAS  Google Scholar 

  10. Wan, Y. et al. Novel biodegradable poly(1,8-octanediol malate) for annulus fibrosus regeneration. Macromol. Biosci. 7, 1217–1224 (2007).

    Article  CAS  Google Scholar 

  11. Chang, G., Kim, H. J., Kaplan, D., Vunjak-Novakovic, G. & Kandel, R. A. Porous silk scaffolds can be used for tissue engineering annulus fibrosus. Eur. Spine J. 16, 1848–1857 (2007).

    Article  CAS  Google Scholar 

  12. Gruber, H. E., Ingram, J. A., Leslie, K., Norton, H. J. & Hanley, E. N. Jr Cell shape and gene expression in human intervertebral disc cells: In vitro tissue engineering studies. Biotech. Histochem. 78, 109–117 (2003).

    Article  CAS  Google Scholar 

  13. Nerurkar, N. L., Mauck, R. L. & Elliott, D. M. ISSLS prize winner: Integrating theoretical and experimental methods for functional tissue engineering of the annulus fibrosus. Spine 33, 2691–2701 (2008).

    Article  Google Scholar 

  14. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  Google Scholar 

  15. Caplan, A. I. Mesenchymal stem cells. J. Orthop. Res. 9, 641–650 (1991).

    Article  CAS  Google Scholar 

  16. Marchand, F. & Ahmed, A. M. Investigation of the laminate structure of lumbar disc annulus fibrosus. Spine 15, 402–410 (1990).

    Article  CAS  Google Scholar 

  17. Li, W. J. et al. Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: A pilot study. J. Tissue Eng. Regen Med. 3, 1–10 (2009).

    Article  CAS  Google Scholar 

  18. Nerurkar, N. L., Elliott, D. M. & Mauck, R. L. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J. Orthop. Res. 25, 1018–1028 (2007).

    Article  CAS  Google Scholar 

  19. Baker, B. M. & Mauck, R. L. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28, 1967–1977 (2007).

    Article  CAS  Google Scholar 

  20. Gokorsch, S., Weber, C., Wedler, T. & Czermak, P. A stimulation unit for the application of mechanical strain on tissue engineered anulus fibrosus cells: A new system to induce extracellular matrix synthesis by anulus fibrosus cells-dependent on cyclic mechanical strain. Int. J. Artif. Organs 28, 1242–1250 (2005).

    Article  CAS  Google Scholar 

  21. Reza, A. T. & Nicoll, S. B. Hydrostatic pressure differentially regulates outer and inner annulus fibrosus cell matrix production in 3D scaffolds. Ann. Biomed. Eng. 36, 204–213 (2008).

    Article  Google Scholar 

  22. Neidlinger-Wilke, C. et al. A three-dimensional collagen matrix as a suitable culture system for the comparison of cyclic strain and hydrostatic pressure effects on intervertebral disc cells. J. Neurosurg. Spine 2, 457–465 (2005).

    Article  Google Scholar 

  23. Mizuno, H. et al. Biomechanical and biochemical characterization of composite tissue-engineered intervertebral discs. Biomaterials 27, 362–370 (2006).

    Article  CAS  Google Scholar 

  24. Smith, L. J. & Fazzalari, N. L. Regional variations in the density and arrangement of elastic fibres in the anulus fibrosus of the human lumbar disc. J. Anat. 209, 359–367 (2006).

    Article  Google Scholar 

  25. Stella, J. A. et al. Tissue-to-cellular level deformation coupling in cell micro-integrated elastomeric scaffolds. Biomaterials 29, 3228–3236 (2008).

    Article  CAS  Google Scholar 

  26. Guerin, H. A. & Elliott, D. M. Degeneration affects the fibre reorientation of human annulus fibrosus under tensile load. J. Biomech. 39, 1410–1418 (2006).

    Article  Google Scholar 

  27. Huang, A. H., Yeger-McKeever, M., Stein, A. & Mauck, R. L. Tensile properties of engineered cartilage formed from chondrocyte- and MSC-laden hydrogels. Osteoarthritis Cartilage 16, 1074–1082 (2008).

    Article  CAS  Google Scholar 

  28. Shine, K. M. & Spector, M. The presence and distribution of lubricin in the caprine intervertebral disc. J. Orthop. Res. 26, 1398–1406 (2008).

    Article  Google Scholar 

  29. Melrose, J. et al. Biglycan and fibromodulin fragmentation correlates with temporal and spatial annular remodelling in experimentally injured ovine intervertebral discs. Eur. Spine J. 16, 2193–2205 (2007).

    Article  Google Scholar 

  30. Veres, S. P., Robertson, P. A. & Broom, N. D. ISSLS prize winner: Microstructure and mechanical disruption of the lumbar disc annulus. Part II. How the annulus fails under hydrostatic pressure. Spine 33, 2711–2720 (2008).

    Article  Google Scholar 

  31. Michalek, A. J., Buckley, M. R., Bonassar, L. J., Cohen, I. & Iatridis, J. C. Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: Contributions of matrix fiber orientation and elastin content. J. Biomech. 10.1016/j.jbiomech.2009.06.047 (2009).

  32. Rhodin, J. in Handbook of Physiology (ed. Berne, R.) (Waverly Press, 1980).

    Google Scholar 

  33. Maurice, D. M. The structure and transparency of the cornea. J. Physiol. 136, 263–286 (1957).

    Article  CAS  Google Scholar 

  34. Clark, J. M. & Harryman, D. T. 2nd. Tendons, ligaments, and capsule of the rotator cuff. Gross and microscopic anatomy. J. Bone Joint Surg. Am. 74, 713–725 (1992).

    Article  CAS  Google Scholar 

  35. Petersen, W. & Tillmann, B. Collagenous fibril texture of the human knee joint menisci. Anat. Embryol. (Berl) 197, 317–324 (1998).

    Article  CAS  Google Scholar 

  36. Shields, K. J., Beckman, M. J., Bowlin, G. L. & Wayne, J. S. Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Eng. 10, 1510–1517 (2004).

    Article  CAS  Google Scholar 

  37. Zhang, X., Baughman, C. B. & Kaplan, D. L. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials 29, 2217–2227 (2008).

    Article  CAS  Google Scholar 

  38. McManus, M. C., Boland, E. D., Simpson, D. G., Barnes, C. P. & Bowlin, G. L. Electrospun fibrinogen: Feasibility as a tissue engineering scaffold in a rat cell culture model. J. Biomed. Mater. Res. A 81, 299–309 (2007).

    Article  Google Scholar 

  39. Baker, B. M. et al. The potential to improve cell infiltration in composite fibre-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29, 2348–2358 (2008).

    Article  CAS  Google Scholar 

  40. Baker, B. M., Nerurkar, N. L., Burdick, J. A., Elliott, D. M. & Mauck, R. L. Fabrication and modeling of dynamic multi-polymer nanofibrous scaffolds. J. Biomech. Eng. 10.1115/1.3192140 (2009).

  41. Sheth, N. P., Baker, B. M., Nathan, A. S. & Mauck, R. L. Transactions of the 53rd Annual Meeting of the Orthopaedic Research Society, San Diego, CA (American Academy of Orthopaedic Surgeons, 2007).

    Google Scholar 

  42. Mauck, R. L., Yuan, X. & Tuan, R. S. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage 14, 179–189 (2006).

    Article  CAS  Google Scholar 

  43. Peltz, C. D., Perry, S. M., Getz, C. L. & Soslowsky, L. J. Mechanical properties of the long-head of the biceps tendon are altered in the presence of rotator cuff tears in a rat model. J. Orthop. Res. 27, 416–420 (2009).

    Article  Google Scholar 

  44. Neuman, R. E. & Logan, M. A. The determination of hydroxyproline. J. Biol. Chem. 184, 299–306 (1950).

    CAS  Google Scholar 

  45. Thomopoulos, S., Williams, G. R., Gimbel, J. A., Favata, M. & Soslowsky, L. J. Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res. 21, 413–419 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. B. Stambough for assistance with data collection. This work was financially supported by the National Institutes of Health (EB02425), the Aircast Foundation and the Penn Center for Musculoskeletal Disorders (AR050950).

Author information

Authors and Affiliations

Authors

Contributions

Experiments were conceived by N.L.N, B.M.B., D.M.E. and R.L.M. Studies on the evolving properties of parallel and opposing bilayers were executed by N.L.N and S.S., with assistance from E.E.W. on histologic analyses. Acellular tensile studies and cell-seeded lap testing studies were carried out by N.L.N. and B.M.B., respectively. The manuscript was prepared by N.L.N., D.M.E. and R.L.M.

Corresponding author

Correspondence to Robert L. Mauck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nerurkar, N., Baker, B., Sen, S. et al. Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus. Nature Mater 8, 986–992 (2009). https://doi.org/10.1038/nmat2558

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2558

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing