Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

On-demand release of corrosion-inhibiting ions from amorphous Al–Co–Ce alloys

Abstract

Controlled release technologies are often used to supply chemicals or drugs at given rates1,2. Release often occurs on contact with solution. However, some applications, such as corrosion protection, require containment of the active species in a reservoir and their slow release when needed. Conductive polymers have been used as reservoirs for corrosion inhibitors whose triggered release occurs by galvanic reduction or ion exchange3,4,5,6,7. This work shows one of the first examples of pH-controlled release of corrosion-inhibiting ions from an amorphous metallic coating where the pH change that triggers release is a consequence of the onset of corrosion. This corrosion-inhibition strategy provides further corrosion protection beyond the traditional roles of barrier and sacrificial cathodic protection using a metal coating8. For instance, zinc galvanizing provides sacrificial cathodic protection and acts as a barrier9, but does not supply inhibitor ions. In the coating described here, protection of an underlying structural alloy exposed at coating defects is demonstrated by inhibitor ion release in addition to barrier function and sacrificial cathodic protection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Active corrosion inhibition from amorphous metallic coating and inhibitor storage in metal.
Figure 2: Experimental proof of inhibitor storage and release from Al–Co–Ce metallic coating.
Figure 3: Measurement and modelling of inhibitor release from an Al–Co–Ce amorphous alloy.
Figure 4: Distributions of pit diameters on the AA2024-T3 surface.

Similar content being viewed by others

References

  1. Cussler, E. L. Diffusion - Mass Transfer in Fluid Systems (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  2. Pernaut, J. -M. & Reynolds, J. R. Use of conducting electroactive polymers for drug delivery and sensing of bioactive molecules. A redox chemistry approach. J. Phys. Chem. B 104, 4080–4090 (2000).

    Article  CAS  Google Scholar 

  3. Kendig, M., Hon, M. & Warren, L. ‘Smart’ corrosion inhibiting coatings. Prog. Org. Coat. 47, 183–189 (2003).

    Article  CAS  Google Scholar 

  4. Kinlen, P. J., Ding, Y. & Silverman, D. C. Corrosion protection of mild steel using sulfonic and phosphonic acid-doped polyanilines. Corrosion 58, 490–497 (2002).

    Article  CAS  Google Scholar 

  5. Kinlen, P. J., Menon, N. & Ding, Y. A mechanisic investigation of polyaniline corrosion protection using the scanning reference electrode technique. J. Electrochem. Soc. 146, 3690–3695 (1999).

    Article  CAS  Google Scholar 

  6. Cook, A., Gabriel, A., Siew, N. & Laycock, N. Corrosion protection of low carbon steel with polyaniline: passivation or inhibition? Curr. Appl. Phys. 4, 133–136 (2004).

    Article  Google Scholar 

  7. Kendig, M. & Hon, M. Environmentally triggered release of oxygen-reduction inhibitors from inherently conducting polymers. Corrosion 60, 1024–1030 (2004).

    Article  CAS  Google Scholar 

  8. Buchheit, R. G., Mamidipally, S. B., Schmutz, P. & Guan, H. in Proc. CORROSION/2000 Research Topical Symp. 67–92 (NACE, Houston, 2000).

    Google Scholar 

  9. Jones, D. A. Principles and Prevention of Corrosion (Prentice-Hall, Upper Saddle River, New Jersey, 1996).

    Google Scholar 

  10. Defense Science Board Report on Corrosion Control (Office of the Under Secretary of Defence For Acquisition, Technology and Logistics, Washington DC, 2004).

    Google Scholar 

  11. US Department of Labor: Occupational Safety and Health Administration. Occupational Exposure to Hexavalent Chromium (Unified Agenda No. 1979, June 2004); www.dol.gov/osha/regs/unifiedagenda/1979.htm.

  12. Koch, G. D., Brongers, M. P. H., Thompson, N. G., Virmani, Y. P. & Payer, J. H. Corrosion costs and preventive strategies in the United States. Mater. Perform. 7 (suppl.), 2–11 (2002).

    Google Scholar 

  13. Kabasakaloglu, M., Aydin, H., Aydin, H. & Aksu, M. L. Inhibitors for the protection of aerospace aluminum alloy. Mater. Corros. 48, 744–754 (1997).

    Article  CAS  Google Scholar 

  14. Shaw, B. A., Davis, G. D., Fritz, T. L. & Olver, K. A. A molybdate treatment for enhancing the passivity of aluminium in chloride-containing environments. J. Electrochem. Soc. 137, 359–360 (1990).

    Article  CAS  Google Scholar 

  15. Hinton, B. R. W., Arnott, D. R. & Ryan, N. E. The inhibition of aluminium alloy corrosion by cerous cations. Met. Forum 7, 211–217 (1984).

    CAS  Google Scholar 

  16. Virtanen, S., Ives, M. B., Sproule, G. I., Schmuki, P. & Graham, M. J. A surface analytical and electrochemical study on the role of cerium in the chemical surface treatment of stainless steels. Corros. Sci. 39, 1879–1913 (1997).

    Article  Google Scholar 

  17. Ilevbare, G. & Burstein, G. T. The inhibition of pitting corrosion of stainless steels by chromate and molybdate ions. Corros. Sci. 45, 1545–1569 (2003).

    Article  CAS  Google Scholar 

  18. Hatch, J. E. Aluminum: Properties and Physical Metallurgy (ASM, Metals Park, Ohio, 1984).

    Google Scholar 

  19. Gao, M., Unlu, N., Jakab, M., Scully, J. & Shiflet, G. J. in Proc. Tri-Service Corrosion Conf. 1323–1330 (NACE, Houston, 2002).

    Google Scholar 

  20. Sinko, J. Challenges of chromate inhibitor pigments replacement in organic coatings. Prog. Org. Coat. 42, 267–282 (2001).

    Article  CAS  Google Scholar 

  21. Szklarska-Smialowska, Z. Pitting Corrosion of Metals (NACE, Houston, 1986).

    Google Scholar 

  22. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (NACE, Houston, 1974).

    Google Scholar 

  23. Goldman, M. E., Unlu, N., Shiflet, G. J. & Scully, J. R. Selected corrosion properties of a novel amorphous Al–Co–Ce alloy system. Electrochem. Solid-State Lett. 8, B1–B5 (2005).

    Article  CAS  Google Scholar 

  24. Hayes, S. A., Yu, P., O’Keefe, T. J., O’Keefe, M. J. & Stoffer, J. O. The phase stability of cerium species in aqueous systems I. E-pH diagram for the Ce-HClO4-H2O system. J. Electrochem. Soc. 149, C623–C630 (2002).

    Article  CAS  Google Scholar 

  25. Xia, L. & McCreery, R. L. Chemistry of a chromate conversion coating on aluminum alloy AA2024-T3 probed by vibrational spectroscopy. J. Electrochem. Soc. 145, 3083–3089 (1998).

    Article  CAS  Google Scholar 

  26. Jakab, M. A., Presuel-Moreno, F. & Scully, J. R. Critical concentrations associated with cobalt, cerium and molybdenum inhibition of AA2024-T3 corrosion: delivery from Al-Co-Ce(-Mo) alloys. Corrosion 61, 246–264 (2005).

    Article  CAS  Google Scholar 

  27. Chen, G. S., Liao, C. M., Wan, K. C., Gao, M. & Wei, R. P. in Effects of Environment on Initiation of Crack Growth, ASTM STP 1298 (eds Van Der Sluys, W. A., Piascik, R. S. & Zawieruca, R.) (ASTM, West Conshohocken, 1997).

    Google Scholar 

  28. Rokhlin, S. I., Kim, J. -Y., Nagy, H. & Zoofan, B. Effect of pitting on fatigue crack initiation and fatigue life. Eng. Fract. Mech. 62, 425–444 (1999).

    Article  Google Scholar 

  29. Ctibor, P. et al. Effect of the in-flight behavior of particles on the amorphous content of metallic coatings under thermal spray conditions. High Temp. Mater. Proc. 8, 381–395 (2004).

    Article  CAS  Google Scholar 

  30. Carvalho, D., Cardoso, S. & Vilar, R. Amorphisation of Zr60Al15Ni25 surface layers by laser processing for corrosion resistance. Scripta Mater. 37, 523–527 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A Multi-University Research Initiative entitled ‘The Development of an Environmentally Compliant Multifunctional Coating for Aerospace Applications using Molecular and Nanoengineering Methods’ supported this work under the direction of Jennifer Gresham at AFOSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Scully.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakab, M., Scully, J. On-demand release of corrosion-inhibiting ions from amorphous Al–Co–Ce alloys. Nature Mater 4, 667–670 (2005). https://doi.org/10.1038/nmat1451

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1451

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing