Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-energy-density extended CO solid

Abstract

Covalently bonded extended phases of molecular solids made of first- and second-row elements at high pressures are a new class of materials with advanced optical, mechanical and energetic properties. The existence of such extended solids has recently been demonstrated using diamond anvil cells in several systems, including nitrogen1, carbon dioxide2 and carbon monoxide3. However, the microscopic quantities produced at the formidable high-pressure/temperature conditions have limited the characterization of their predicted novel properties, including high-energy content. In this paper, we present experimental evidence that these extended low-Z solids are indeed high-energy-density materials, by milligram-scale high-pressure synthesis, recovery and characterization of polymeric CO (p-CO). Our spectroscopic data reveal that p-CO is a random polymer made of lactonic entities and conjugated C=C with an energy content rivalling or exceeding that of HMX (cyclo-tetramethylene tetranitramine, a commonly used conventional high explosive). Solid p-CO explosively decomposes to CO2 and glassy carbon, and thus might be used as an advanced energetic material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Micrographs of CO products.
Figure 2: Video images of a p-CO sample inititated by a continuous-wave YAG laser (λ = 1,064 nm).
Figure 3: Spectral analysis of the recovered p-CO.

Similar content being viewed by others

References

  1. Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A. & Boehler, R. Single bonded cubic form of nitrogen. Nature Mater. 3, 558–563 (2004).

    Article  CAS  Google Scholar 

  2. Iota, V., Yoo, C. S. & Cynn, H. Quartz-like carbon dioxide: an optically nonlinear extended solid at high pressures and temperatures. Science 283, 1510–1513 (1999).

    Article  CAS  Google Scholar 

  3. Katz, A. I., Schiferl, D. & Mills, R. L. New phases and chemical reactions in solid CO under pressure. J. Phys. Chem. 88, 3176–3179 (1984).

    Article  CAS  Google Scholar 

  4. Yoo, C. S. in Science and Technology of High Pressure (eds Manghnani, M. H. Nellis, W. J. & Nicol, M.) 86–89 (University Press, AIRAPT, India, 2000).

    Google Scholar 

  5. Iota, V., Park, J.-H. & Yoo, C. S. Phase diagram of nitrous oxide: analogy with carbon dioxide. Phys. Rev. B 69, 064106 (2004).

    Article  Google Scholar 

  6. Somayazulu, M. et al. Novel broken symmetry phase from N2O at high pressures and temperatures. Phys. Rev. Lett. 87, 135504 (2001).

    Article  CAS  Google Scholar 

  7. Yoo, C. S. et al. Crystal structure of carbon dioxide at high pressure: “Superhard” polymeric carbon dioxide. Phys. Rev. Lett. 83, 5527–5530 (1999).

    Article  CAS  Google Scholar 

  8. Ashcroft, N. W. Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).

    Article  CAS  Google Scholar 

  9. Mailhiot, C., Yang, L. H. & McMahan, A. Polymeric nitrogen. Phys. Rev. B 46, 14419–14435 (1992).

    Article  CAS  Google Scholar 

  10. Barbee, III., T. W., McMahan, A. K., Klepeis, J. E. & van Schilfgaarde, M. High-pressure boron hydride phases. Phys. Rev. B 56, 5148–5155 (1997).

    Article  CAS  Google Scholar 

  11. Christe, K. O., Wilson, W. W., Sheehy, J. A. & Boatz, J. A. N5+: A novel homolepic polynitrogen ion as a high energy density material. Angew. Chem. Int. Edn Engl. 38, 2002–2009 (1999).

    Article  Google Scholar 

  12. Knapp, C. & Passmore, J. On the way to “solid nitrogen” at normal temperature and pressure? Binary azides of heavier group 15 and 16 elements. Angew. Chem. Int. Edn Engl. 43, 4834–4836 (2004).

    Article  CAS  Google Scholar 

  13. Mills, R. L., Olinger, B. & Cromer, D. T. Structures and phase diagrams of N2 and CO to 13 GPa by x-ray diffraction. J. Chem. Phys. 84, 2837–2845 (1986).

    Article  CAS  Google Scholar 

  14. Eremets, M. I., Hemley, R. J., Mao, H.-K. & Gregoryanz, E. Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability. Nature 411, 170–174 (2001).

    Article  CAS  Google Scholar 

  15. Besson, J. M. et al. Neutron powder diffraction above 10 GPa. Physica B 180-181, 907–910 (1992).

    Article  CAS  Google Scholar 

  16. Klotz, S. et al. Techniques for neutron diffraction on solidified gases to 10 GPa and above: applications to ND3 phase IV. Appl. Phys. Lett. 67, 1188–1190 (1995).

    Article  CAS  Google Scholar 

  17. Bundy, F. P. Ultra-high pressure apparatus. Phys. Rep, 167, 133–176 (1988).

    Article  CAS  Google Scholar 

  18. Dobratz, B. M. LLNL Explosive Handbook: Properties of Chemical Explosives and Explosive Simulants UCRL-52977, NTIS (Univ. California, Lawrence Livermore National Laboratory, 1985).

    Google Scholar 

  19. Knight, D. S. & White, W. B. Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385–393 (1989).

    Article  CAS  Google Scholar 

  20. Yoo, C. S. & Nellis, W. J. Phase transformations in carbon fullerenes at high shock pressures. Science 254, 1489–1491 (1991).

    Article  CAS  Google Scholar 

  21. Silverstein, R. & Webster, F. Spectrometric Identification of Organic Compounds 6th edn, Ch. 3 and 5 (Wiley, New York, 1997).

    Google Scholar 

  22. Yang, N. L., Snow, A. & Haubenstock, H. Poly(carbon suboxide): a photosensitive paramagnetic ladder polymer. J. Polym. Sci. 16. 1909–1927 (1978).

    CAS  Google Scholar 

  23. Bernard, S., Chiarotti, G. L., Scandolo, S. & Tosatti, E. Decomposition and polymerization of solid carbon monoxide under pressure. Phys. Rev. Lett. 81, 2092–2095 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Julie Herberg for running the MAS-NMR experiment and Ken Visbeck for help with the large volume press. Work performed at Lawrence Livermore National Laboratory under the auspices of the US Department of Energy under contract number W-7405-Eng-48.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choong-Shik Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipp, M., Evans, W., Baer, B. et al. High-energy-density extended CO solid. Nature Mater 4, 211–215 (2005). https://doi.org/10.1038/nmat1321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing