Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The evolution of vesicles from bulk lamellar gels

Abstract

The remarkable ability of phospholipids to generate vesicles and lamellar morphologies has been mimicked by amphiphilic block copolymers and both classes of amphiphiles have been extensively studied in bulk and in dilute solution. The most common vesicle preparation method involves diffusion of water into a lamellar gel. The transformation proceeds from a collection of water-poor planar lamellae, to a water-rich interconnected layer-phase and then a collection of closed lamellae (vesicles) that form a close-packed gel. This is demonstrated by scattering and microscopy with the evolution of the gel structure being driven by increasing curvature. Vesicles have been observed to form when the copolymer–water system still has long-range order, with a discrete, clustered-vesicle structure leading to a turbid dispersion. Eventually, at very low concentration, the packed vesicles separate, generating very stable isotropic dispersions that are transparent. This phase sequence, involving a dispersion of close-packed vesicles, accounts for the formation of a narrow size distribution in these systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Morphology of E115B103 at 30% w/w in water.
Figure 3: Morphology of E115B103 at 10% w/w in water.
Figure 4: Morphology of E115B103 at 5% w/w in water.
Figure 5: Morphology of E115B103 at 0.5% w/w in water.
Figure 6: The phase diagram of E115B103 in water.

Similar content being viewed by others

References

  1. Paschalis, A. & Bjorn, L. Amphiphilic Block Copolymers: Self-Assembly and Applications (Elsevier Science, Amsterdam, 2000).

    Google Scholar 

  2. Hamley, I. W. The Physics of Block Copolymers (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  3. Discher, D. E. & Eisenberg, A. Polymer vesicles. Science 297, 967–973 (2002).

    Article  Google Scholar 

  4. Israelachivili, J. N. in Intermolecular & Surface Forces (ed. Press, A.) (Elsevier Science Imprint, London, 2002).

    Google Scholar 

  5. Tanford, C. Hydrophobic Effect: Formation of Micelles and Biological Membranes (Wiley, New York, 1973).

    Google Scholar 

  6. Tanford, C. Interfacial free energy and the hydrophobic effect. Proc. Natl Acad. Sci. USA 76, 4175–4176 (1979).

    Article  Google Scholar 

  7. Israelachvili, J. & Wennerstrom, H. Role of hydration and water structure in biological and colloidal interactions. Nature 379, 219–225 (1996).

    Article  Google Scholar 

  8. Matsen, M. W. & Bates, F. S. Origins of complex self-assembly in block copolymers. Macromolecules 29, 7641–7644 (1996).

    Article  Google Scholar 

  9. Alexandridis, P. & Spontak, R. J. Solvent-regulated ordering in block copolymers. Curr. Opin. Colloid Interface Sci. 4, 130–139 (1999).

    Article  Google Scholar 

  10. Lang, J. C. & Morgan, R. D. Nonionic surfactant mixtures. I. Phase equilibria in C10E4–H2O and closed-loop coexistence. J. Chem. Phys. 73, 5849–5861 (1980).

    Article  Google Scholar 

  11. Tiddy, G. J. T. Surfactant-water liquid crystal phases. Phys. Rep. 57, 1–46 (1980).

    Article  Google Scholar 

  12. Hamley, I. W., Mai, S.-M., Ryan, A. J., Fairclough, J. P. A. & Booth, C. Aqueous mesophases of block copolymers of ethylene oxide and 1,2-butylene oxide. Phys. Chem. Chem. Phys. 3, 2972–2980 (2001).

    Article  Google Scholar 

  13. Wanka, G., Hoffmann, H. & Ulbricht, W. Phase diagrams and aggregation behavior of poly (oxyethy1ene)-poly (oxypropylene)-poly (oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 27, 4145–4159 (1994).

    Article  Google Scholar 

  14. Pople, J. A. et al. Ordered phases in aqueous solutions of diblock oxyethylene/oxybutylene copolymers investigated by simultaneous small-angle x-ray scattering and rheology. Macromolecules 30, 5721–5728 (1997).

    Article  Google Scholar 

  15. Arleth, L., Bergstro, M. & Pedersen, J. S. Small-angle neutron scattering study of the growth behavior, flexibility, and intermicellar interactions of wormlike SDS micelles in NaBr aqueous solutions. Langmuir 18, 5343–5353 (2002).

    Article  Google Scholar 

  16. Bernheim-Groswasser, A., Wachtel, E. & Talmon, Y. Micellar growth, network formation, and criticality in aqueous solutions of the nonionic surfactant C12E5 . Langmuir 16, 4131–4140 (2000).

    Article  Google Scholar 

  17. Kapnistos, M. et al. Reversible thermal gelation in soft spheres. Phys. Rev. Lett. 85, 4072–4075 (2000).

    Article  Google Scholar 

  18. Zilman, A., Tlusty, T. & Safran, S. A. Entropic networks in colloidal, polymeric and amphiphilic systems. J. Phys. C 15, S57–S64 (2003).

    Google Scholar 

  19. Helfrich, W. Lyotropic lamellar phases. J. Phys. C 6, A79–A92 (1994).

    Google Scholar 

  20. Lipowsky, R. The conformation of membranes. Nature 349, 475–481 (1991).

    Article  Google Scholar 

  21. Roux, D., Codon, C. & Cates, M. E. Sponge phases in surfactant solutions. J. Phys. Chem. 96, 4174–4187 (1992).

    Article  Google Scholar 

  22. Granek, R. & Cates, M. E. Sponge phase of surfactant solutions: An unusual dynamic structure factor. Phys. Rev. A 46, 3319–3334 (1992).

    Article  Google Scholar 

  23. Helfrich, W. in Giant Vesicles (ed. Walde, P.) 51–70 (Wiley, Chichester, 2000).

    Google Scholar 

  24. Dobereiner, H.-G., Evans, E., Kraus, M., Seifert, U. & Wortis, M. Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory. Phys. Rev. E 55, 4458–4474 (1997).

    Article  Google Scholar 

  25. Wintz, W., Dobereiner, H.-G. & Seifert, U. Starfish vesicles. Europhys. Lett. 33, 403–408 (1996).

    Article  Google Scholar 

  26. Seifert, U., Berndl, K. & Lipowsky, R. Shape transformations of vesicles: Phase diagram for spontaneous-curvature and bilayer-coupling models. Phys. Rev. A 44, 1182–1202 (1991).

    Article  Google Scholar 

  27. Lasic, D. D., U, R. J., Kellerc, B. C., Frederik, P. M. & Auvray, L. Spontaneous vesiculation. Adv. Colloid Interface Sci. 89–90, 337–349 (2001).

    Article  Google Scholar 

  28. Jain, S. & Bates, F. S. Consequences of nonergodicity in aqueous binary PEO-PB micellar dispersions. Macromolecules 37, 1511–1523 (2004).

    Article  Google Scholar 

  29. Won, Y.-Y., Davis, H. T. & Bates, F. S. Molecular exchange in PEO-PB micelles in water. Macromolecules 36, 953–955 (2003).

    Article  Google Scholar 

  30. Jain, S. & Bates, F. S. On the origins of morphological complexity in block copolymer surfactants. Science 300, 460–464 (2003).

    Article  Google Scholar 

  31. Battaglia, G. & Ryan, A. J. Bilayers and interdigitation in block copolymer vesicles. J. Am. Chem. Soc. 127, 8757–8764 (2005).

    Article  Google Scholar 

  32. Ryan, A. J., Mai, S.-M., Fairclough, J. P. A., Hamley, I. W. & Booth, C. Ordered melts of block copolymers of ethylene oxide and 1,2-butylene oxide. Phys. Chem. Chem. Phys. 3, 2961–2971 (2001).

    Article  Google Scholar 

  33. Lipowsky, R. & Leibler, S. Unbinding transitions of interacting membranes. Phys. Rev. Lett. 56, 2541–2544 (1986).

    Article  Google Scholar 

  34. Leibler, S. & Lipowsky, R. Complete unbinding and quasi-long-range order in lamellar phases. Phys. Rev. B 35, 7004–7009 (1987).

    Article  Google Scholar 

  35. Petrache, H. I. et al. Interbilayer interactions from high-resolution x-ray scattering. Phys. Rev. E 57, 7014–7024 (1998).

    Article  Google Scholar 

  36. Forster, S. et al. Lyotropic phase morphologies of amphiphilic block copolymers. Macromolecules 34, 4610–4623 (2001).

    Article  Google Scholar 

  37. Alexandridis, P., Olsson, U. & Lindman, B. Structural polymorphism of amphiphilic copolymers: Six lyotropic liquid crystalline and two solution phases in a poly(oxybutylene)-b-poly(oxyethylene)-water-xylene system. Langmuir 13, 23–34 (1997).

    Article  Google Scholar 

  38. Rummel, G. et al. Lipidic cubic phases: New matrices for the three-dimensional crystallization of membrane proteins. J. Struct. Biol. 121, 82–91 (1998).

    Article  Google Scholar 

  39. Jamieson, S. J. et al. Projection structure of the photosynthetic reaction centre-antenna complex of Rhodospirillum rubrum at 8.5 Å resolution. EMBO J. 15, 3927–3935 (2002).

    Article  Google Scholar 

  40. Costa, M. F. M. Application of image processing to the characterisation of nanostructures. Rev. Adv. Mater. Sci. 6, 12–20 (2004).

    Google Scholar 

  41. Sokolov, I., Jiang, T. & Ozin, G. A. Tin sulfide mesh: AFM imaging of lamellae and mesopores. Adv. Mater. 10, 942–946 (1998).

    Article  Google Scholar 

  42. Hamley, I. W. et al. From hard spheres to soft spheres: The effect of copolymer composition on the structure of micellar cubic phases formed by diblock copolymers in aqueous solution. Langmuir 2508–2514 (2000).

  43. Glatter, O. & Kratky, O. Small Angle X-ray Scattering (Academic, London, New York, 1982).

    Google Scholar 

  44. Laggner, P. in Small Angle X-ray Scattering (eds Glatter, O. & Kratky, O.) 329–358 (Academic, London, New York, 1982).

    Google Scholar 

  45. Linder, P. & Zemb, T. Neutrons, X-rays and Light: Scattering Methods Applied to Soft Matter (Elsevier Science B.V., Amsterdam, 2002).

    Google Scholar 

  46. Bates, F. S. & Fredrickson, G. H. Block copolymer thermodynamics: Theory and experiment. Annu. Rev. Phys. Chem. 41, 525–557 (1990).

    Article  Google Scholar 

  47. Kroy, K., Cates, M. E. & Poon, W. C. K. Cluster mode-coupling approach to weak gelation in attractive colloids. Phys. Rev. Lett. 92, 148302 (2004).

    Article  Google Scholar 

  48. Bergenholtz, J. & Fuchs, M. Gel transitions in colloidal suspensions. J. Phys. C 11, 10171–10182 (1999).

    Google Scholar 

  49. Haw, M. D., Poon, W. C. K. & Pusey, P. N. Structure and arrangement of clusters in cluster aggregation. Phys. Rev. E 56, 1918–1933 (1997).

    Article  Google Scholar 

  50. Cernik, R. J., Barnes, P., Greaves, G. N., Rayment, T. & Ryan, A. J. Facilities for synchrotron X-ray materials processing on the SRS Daresbury. Appl. Crystallogr. 19, 3–9 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the ICI Strategic Technology Group for financial support, and the contribution of S. -M. Mai, who synthesized the block copolymer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Ryan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battaglia, G., Ryan, A. The evolution of vesicles from bulk lamellar gels. Nature Mater 4, 869–876 (2005). https://doi.org/10.1038/nmat1501

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1501

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing