Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Blue-light emission at room temperature from Ar+-irradiated SrTiO3

Abstract

Oxide-based electronic devices are expected to have fascinating properties, unlike those made from conventional semiconductors. SrTiO3 (STO) is a key material for this new field of electronics1,2,3,4,5,6,7,8,9,10,11. Here we report on blue-light emission at room temperature from Ar+-irradiated, metallic STO. The irradiation introduces oxygen deficiencies to a depth of 20 nm from the crystal surface. These deficiencies generate conduction carriers and stabilize a hole level in a self-trapped state. We propose a model by which the doped conduction electrons and the in-gap state produce a radiative process that results in blue-light emission. The emitting region can be patterned into any size and shape with conventional microscopic fabrication techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature dependence of the sheet resistance of irradiated STO.
Figure 2: Structural changes induced by Ar+ irradiation.
Figure 3: Room-temperature photoluminescence (PL) characteristics of irradiated STO crystals and reduced STO thin films.
Figure 4: Changes in the photoluminescence spectra of Ar+-irradiated STO from 300 to 20 K and the schematic models of possible mechanisms for the observed photoluminescence.
Figure 5: Examples of blue-light emission from a local engineered region of oxygen vacancies.

Similar content being viewed by others

References

  1. Müller, K. A. & Burard, H. SrTiO3: an intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19, 3593–3602 (1979).

    Article  Google Scholar 

  2. Itoh, M. et al. Ferroelectricity induced by oxygen isotope exchange in strontium titanate perovskite. Phys. Rev. Lett. 82, 3540–3543 (1999).

    Article  Google Scholar 

  3. Takesada, M., Yagi, T., Itoh, M. & Koshiahra, S. A gigantic photoinduced dielectric constant of quantum paraelectric perovskite oxides observed under a weak dc electric field. J. Phys. Soc. Jpn 72, 37–40 (2003).

    Article  Google Scholar 

  4. Hasegawa, T., Mouri, S., Yamada, Y. & Tanaka, K. Giant photo-induced dielectricity in SrTiO3 . J. Phys. Soc. Jpn 72, 41–44 (2003).

    Article  Google Scholar 

  5. Kawasaki, M. et al. Atomic control of the SrTiO3 crystal surface. Science 266, 1540–1542 (1994).

    Article  Google Scholar 

  6. Koster, G., Korpman, B. L., Rijnders, G. J. H. M., Blank, D. H. A. & Rogalla, H. Quasi-ideal strontium titanate crystal surface through formation of strontium hydroxide. Appl. Phys. Lett. 73, 2920–2922 (1998).

    Article  Google Scholar 

  7. Sugiura, M., Uragou, K., Tachiki, M. & Kobayashi, T. Estimation of trap levels in SrTiO3 epitaxial films from measurement of (LaSr)MnO3/SrTiO3/(LaSr)TiO3 p-i-n diode characteristics. J. Appl. Phys. 90, 187–191 (2001).

    Article  Google Scholar 

  8. Bellingeri, E., Pellegrino, L., Marre, D., Pallecchi, I. & Siri, A. S. All-SrTiO3 field effect devices made by anodic oxidation of epitaxial semiconducting thin films. J. Appl. Phys. 94, 5976–5981 (2003).

    Article  Google Scholar 

  9. Pallecchi, I., Pellegrino, L., Bellingeri, E., Siri, A. S. & Marre, D. Field effect on planar device made of epitaxial manganite perovskites. J. Appl. Phys. 95, 8079–8086 (2004).

    Article  Google Scholar 

  10. Muller, D. A., Nakagawa, N., Ohtomo, A., Grazul, J. L. & Hwang, H. Y. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3 . Nature 430, 657–661 (2004).

    Article  Google Scholar 

  11. Muraoka, Y., Muramatsu, T., Yamaura, Y. & Hiroi, Z. Photogenerated hole carrier injection to YBa2Cu3O7−x in an oxide heterostructure. Appl. Phys. Lett. 85, 2950–2952 (2004).

    Article  Google Scholar 

  12. Suzuki, H. et al. Superconductivity in single-crytstallines Sr1−xLaxTiO3 . J. Phys. Soc. Jpn 65, 1529–1532 (1996).

    Article  Google Scholar 

  13. Schooley, J. F. et al. Superconductivity in semiconducting SrTiO3 . Phys. Rev. Lett. 12, 474–475 (1964).

    Article  Google Scholar 

  14. Tufte, O. N. et al. Electron mobility in semiconducting strontium titanate. Phys. Rev. 155, 796–802 (1967).

    Article  Google Scholar 

  15. Henrich, V. E., Dresselhaus, G. & Zeiger, H. J. Surface defects and the electronic structures of SrTiO3 surfaces. Phys. Rev. B 17, 4908–4921 (1978).

    Article  Google Scholar 

  16. Pontes, F. M. et al. Photoluminescence at room temperature in amorphous SrTiO3 thin films obtained by chemical solution deposition. Mater. Chem. Phys. 77, 598–602 (2002).

    Article  Google Scholar 

  17. Grabner, L. Photoluminescence in SrTiO3 . Phys. Rev. 177, 1315–1323 (1969).

    Article  Google Scholar 

  18. Feng, T. Anomalous photoelectric process in SrTiO3 . Phys. Rev. B 25, 627–641 (1982).

    Article  Google Scholar 

  19. Leonelli, R. & Brebner, J. L. Time-resolved spectroscopy of the visible emission band in strontium titanate. Phys. Rev. B 33, 8649–8656 (1986).

    Article  Google Scholar 

  20. Hasegawa, T., Shirai, M. & Tanaka, K. Localizing nature of photo-excited states in SrTiO3 . J. Lumin. 87, 1217 (2000).

    Article  Google Scholar 

  21. Capizzi, M. & Frova, A. Optical gap of strontium titanate. (Deviation from urbach tail behavior). Phys. Rev. Lett. 25, 1298–1302 (1970).

    Article  Google Scholar 

  22. Matteiss, L. F. Effect of the 110 K phase transition on the SrTiO3 conduction bands. Phys. Rev. B 6, 4740–4753 (1972).

    Article  Google Scholar 

  23. Mochizuki, S., Fujishiro, F. & Minami, S. Photoluminescence and reversible photo-induced spectral change of SrTiO3 . J. Phys. C 17, 923–948 (2005).

    Google Scholar 

  24. Müller, K. A., Berlinger, W. & Waldner, F. Characteristic structural phase transition in perovskite-type compounds. Phys. Rev. Lett. 21, 814–817 (1968).

    Article  Google Scholar 

  25. Shirane, G. & Yamada, Y. Lattice-dynamical study of the 110 K phase transition in SrTiO3 . Phys. Rev. 177, 858–863 (1969).

    Article  Google Scholar 

  26. Ihrig, H., Hengst, J. H. T. & Klerk, M. Conductivity-dependent cathodeluminescence in BaTiO3, SrTiO3 and TiO2 . Z. Phys. B 40, 301–306 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to S. Kasai for his assistance in the photolithography. Thanks are also due to K. Matsuda and H. Hirori for their assistance in the photoluminescence measurements. This work was partly supported by the Grant-in-Aids for COE Research on Elements Science (No. 12CE2005), Scientific Research on Priority Areas (No. 751), and Scientific Research (No. 17105002) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Kan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kan, D., Terashima, T., Kanda, R. et al. Blue-light emission at room temperature from Ar+-irradiated SrTiO3. Nature Mater 4, 816–819 (2005). https://doi.org/10.1038/nmat1498

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1498

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing