Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly bright and stable single-crystal perovskite light-emitting diodes

Abstract

Metal-halide perovskite light-emitting diodes (PeLEDs) have attracted great interest because of their tunable emission wavelength, narrow emission bandwidth and high external quantum efficiency. However, PeLEDs face two critical issues that limit their potential applications: short device lifetime due to ion migration and low brightness due to severe Auger recombination. Here we demonstrate that both issues can be mitigated by in situ solution-grown perovskite single crystals (SCs). By minimizing the trap density using mixed cations and adding excess ammonium halides and polyvidone to the precursor, the external photoluminescence quantum yield (PLQY) of the SCs is enhanced to 28.3%, corresponding to an internal PLQY of 89.4%. Benefitting from the suppressed Auger recombination in SCs, SC-PeLEDs with a thickness of 1.5 µm exhibit a high luminance of 86,000 cd m−2 and a peak external quantum efficiency of 11.2%. Thanks to suppressed ion migration, the extrapolated T50 lifetime for SC-PeLEDs reaches a value of 12,500 h at an initial luminance of 100 cd m−2. Our results show that SC growth represents a viable route to increase the lifetime of PeLEDs for practical applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Growth and optimization of perovskite SCs.
Fig. 2: Device structure and performance of the SC-PeLEDs.
Fig. 3: Carrier recombination dynamics in SCs and PC films.
Fig. 4: Operational stability of SC-PeLEDs and PC-PeLEDs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    Article  ADS  Google Scholar 

  2. Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photon. 10, 295–302 (2016).

    Article  ADS  Google Scholar 

  3. Chen, J. et al. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photon. 15, 238–244 (2021).

    Article  ADS  Google Scholar 

  4. Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    Article  ADS  Google Scholar 

  5. Huang, J., Yuan, Y., Shao, Y. & Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017).

    Article  ADS  Google Scholar 

  6. Liu, X. K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).

    Article  ADS  Google Scholar 

  7. Wei, C. et al. A universal ternary-solvent-ink strategy toward efficient inkjet-printed perovskite quantum dot light-emitting diodes. Adv. Mater. 34, 2107798 (2022).

    Article  Google Scholar 

  8. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  ADS  Google Scholar 

  9. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  ADS  Google Scholar 

  10. Xu, W. D. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    Article  ADS  Google Scholar 

  11. Cui, J. et al. Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Sci. Adv. 7, eabg8458 (2021).

    Article  ADS  Google Scholar 

  12. Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).

    Article  ADS  Google Scholar 

  13. Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).

    Article  ADS  Google Scholar 

  14. Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  15. Ye, F., Shan, Q., Zeng, H. & Choy, W. C. H. Operational and spectral stability of perovskite light-emitting diodes. ACS Energy Lett. 6, 3114–3131 (2021).

    Article  Google Scholar 

  16. Li, N., Jia, Y., Guo, Y. & Zhao, N. Ion migration in perovskite light-emitting diodes: mechanism, characterizations, and material and device engineering. Adv. Mater. 34, e2108102 (2022).

    Article  Google Scholar 

  17. Woo, S.-J., Kim, J. S. & Lee, T.-W. Characterization of stability and challenges to improve lifetime in perovskite LEDs. Nat. Photon. 15, 630–634 (2021).

    Article  ADS  Google Scholar 

  18. Chen, H. et al. Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes. Sci. Adv. 6, eaay4045 (2020).

    Article  ADS  Google Scholar 

  19. Xu, L. et al. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 11, 3902 (2020).

    Article  ADS  Google Scholar 

  20. Han, T. H. et al. Surface-2D/Bulk-3D heterophased perovskite nanograins for long-term-stable light-emitting diodes. Adv. Mater. 32, e1905674 (2020).

    Article  Google Scholar 

  21. Han, B. et al. Green perovskite light‐emitting diodes with 200 hours stability and 16% efficiency: cross-linking strategy and mechanism. Adv. Funct. Mater. 31, 2011003 (2021).

    Article  Google Scholar 

  22. Xiao, Z. et al. Mixed-halide perovskites with stabilized bandgaps. Nano Lett. 17, 6863–6869 (2017).

    Article  ADS  Google Scholar 

  23. Jiang, Y. et al. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 336 (2021).

    Article  Google Scholar 

  24. Li, M. et al. Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals. Nat. Commun. 9, 4197 (2018).

    Article  ADS  Google Scholar 

  25. Li, J. et al. Perovskite single crystals: synthesis, optoelectronic properties and application. Adv. Funct. Mater. 31, 2008684 (2021).

    Article  Google Scholar 

  26. Lei, Y., Chen, Y. & Xu, S. Single-crystal halide perovskites: opportunities and challenges. Matter 4, 2266–2308 (2021).

    Article  Google Scholar 

  27. Deng, Y. H., Yang, Z. Q. & Ma, R. M. Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering. Nano Converg. 7, 25 (2020).

    Article  Google Scholar 

  28. Chen, Z. et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nat. Commun. 8, 1890 (2017).

    Article  ADS  Google Scholar 

  29. Kong, W. et al. Ultrathin perovskite monocrystals boost the solar cell performance. Adv. Energy Mater. 10, 2000453 (2020).

    Article  Google Scholar 

  30. Oranskaia, A., Yin, J., Bakr, O. M., Bredas, J. L. & Mohammed, O. F. Halogen migration in hybrid perovskites: the organic cation matters. J. Phys. Chem. Lett. 9, 5474–5480 (2018).

    Article  Google Scholar 

  31. Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article  ADS  Google Scholar 

  32. Ma, L. et al. A polymer controlled nucleation route towards the generalized growth of organic–inorganic perovskite single crystals. Nat. Commun. 12, 2023 (2021).

    Article  ADS  Google Scholar 

  33. Zheng, K. et al. Exciton binding energy and the nature of emissive states in organometal halide perovskites. J. Phys. Chem. Lett. 6, 2969–2975 (2015).

    Article  Google Scholar 

  34. Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).

    Article  ADS  Google Scholar 

  35. Chen, J., Ma, P., Chen, W. & Xiao, Z. Overcoming outcoupling limit in perovskite light-emitting diodes with enhanced photon recycling. Nano Lett. 21, 8426–8432 (2021).

    Article  ADS  Google Scholar 

  36. Zhao, L. et al. In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices. ACS Nano 11, 3957–3964 (2017).

    Article  Google Scholar 

  37. Kim, H. et al. Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nat. Commun. 11, 3378 (2020).

    Article  ADS  Google Scholar 

  38. Lee, J. W. et al. In-situ formed type I nanocrystalline perovskite film for highly efficient light-emitting diode. ACS Nano 11, 3311–3319 (2017).

    Article  Google Scholar 

  39. Patkar, M., Lundstrom, M. & Melloch, M. R. Characterization of photon recycling in thin crystalline GaAs light emitting diodes. J. Appl. Phys. 78, 2817–2822 (1995).

    Article  ADS  Google Scholar 

  40. Sun, C. C., Lee, T. X., Lo, Y. C., Chen, C. C. & Tsai, S. Y. Light extraction enhancement of GaN-based LEDs through passive/active photon recycling. Opt. Commun. 284, 4862–4868 (2011).

    Article  ADS  Google Scholar 

  41. Staub, F. et al. Beyond bulk lifetimes: insights into lead halide perovskite films from time-resolved photoluminescence. Phys. Rev. Appl. 6, 044017 (2016).

    Article  ADS  Google Scholar 

  42. Woo, H. C. et al. Temperature-dependent photoluminescence of CH3NH3PbBr3 perovskite quantum dots and bulk counterparts. J. Phys. Chem. Lett. 9, 4066–4074 (2018).

    Article  Google Scholar 

  43. Yang, Y. et al. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nat. Energy 2, 16207 (2017).

    Article  ADS  Google Scholar 

  44. Zhao, L., Lee, K. M., Roh, K., Khan, S. U. Z. & Rand, B. P. Improved outcoupling efficiency and stability of perovskite light-emitting diodes using thin emitting layers. Adv. Mater. 31, 1805836 (2019).

    Article  Google Scholar 

  45. Cheng, G. et al. Efficient all-inorganic perovskite light-emitting diodes with improved operation stability. ACS Appl. Mater. 12, 18084–18090 (2020).

    Article  Google Scholar 

  46. Lin, Y. et al. Excess charge-carrier induced instability of hybrid perovskites. Nat. Commun. 9, 4981 (2018).

    Article  ADS  Google Scholar 

  47. Anaya, M. et al. Best practices for measuring emerging light-emitting diode technologies. Nat. Photon. 13, 818–821 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Z.X. acknowledges support from the National Natural Science Foundation of China (51872274 and 62175226) and the Fundamental Research Funds for the Central Universities (WK2060190100). This work was partially carried out at the University of Science and Technology of China Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Contributions

Z.X. conceived the idea and supervised the project. W.C., Y.L. and H.Y. fabricated and characterized the perovskite SCs and PeLEDs. Z.H. carried out the optical simulation of the PeLEDs and performed the PLQY and TRPL measurements. Y.Z. and Z.L. helped with the fluorescence microscopy characterizations. H.Z. helped with the SEM and EDS mapping characterizations. P.X. and T.C. performed the transient absorption characterizations. Z.X., W.C. and Z.H. wrote the manuscript, and all authors discussed the results and reviewed the manuscript.

Corresponding author

Correspondence to Zhengguo Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Figs. 1–16, Table 1 and References 1–30.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Huang, Z., Yao, H. et al. Highly bright and stable single-crystal perovskite light-emitting diodes. Nat. Photon. 17, 401–407 (2023). https://doi.org/10.1038/s41566-023-01167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01167-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing