Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics

Abstract

Block-copolymer amphiphiles have been observed to assemble into vesicles and other morphologies long known for lipids but with remarkably different properties. Coarse-grain molecular dynamics (CG-MD) is used herein to elaborate the structures and properties of diblock copolymer assemblies in water. By varying the hydrophilic/hydrophobic ratio of the copolymer in line with experiment, bilayer, cylindrical and spherical micelle morphologies spontaneously assemble. Varying the molecular weight (MW) with hydrophilic/hydrophobic ratio appropriate to a bilayer yields a hydrophobic core thickness that scales for large MW as a random coil polymer, in agreement with experiment. The extent of hydrophobic-segment overlap in the core increases nonlinearly with MW, indicative of chain entanglements and consistent with the dramatic decrease reported for lateral mobility in polymer vesicles. Calculated trends with MW as well as hydrophilic/hydrophobic ratio thus agree with experiment, demonstrating that CG-MD simulations provide a rational design tool for diblock copolymer assemblies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Snap-shots taken from coarse-grain molecular dynamics simulations of diblock copolymers in water.
Figure 2: Coarse-graining scheme used to model a PEO-PEE diblock copolymer.
Figure 3: Membrane core dimensions versus MWphob.
Figure 4: Master plot of membrane tension versus dilation curves for a wide range of diblock copolymer systems.
Figure 5: Density profiles revealing the chain entanglement and interdigitation.
Figure 6: Chain overlap, experimental diffusivity, and chain entanglements.

Similar content being viewed by others

References

  1. Discher, B.M. et al. Polymersomes: Tough vesicles made from diblock copolymers. Science 284, 1143–1146 (1999).

    Article  CAS  Google Scholar 

  2. Cornelissen, J.L.M., Fisher, M., Sommerdijk, N.A.J.M. & Nolte R.J.M. Helical superstructures from charged poly(styrene)-poly(isocyanodipeptide) block copolymers. Science 280, 1427–1430 (1998).

    Article  CAS  Google Scholar 

  3. Meier, W., Nardin, C. & Winterhalter, M. Reconstitution of channel proteins in (polymerized) ABA triblock copolymer membranes. Angew. Chem. Int. Edn 39, 4599–4602 (2000).

    Article  CAS  Google Scholar 

  4. Nardin, C., Widmer, J., Winterhalter, M. & Meier, W. Amphiphilic block copolymer nanocontainers as bioreactors. Eur. Phys. J. E 4, 403–410 (2001).

    Article  CAS  Google Scholar 

  5. Okada, J., Cohen, S. & Langer, R. In-vitro evaluation of polymerized liposomesas an oral-drug delivery system. Pharmaceut. Res. 12, 576–582 (1995).

    Article  CAS  Google Scholar 

  6. Discher, D.E. & Eisenberg, A. Polymer vesicles. Science 297, 967–973 (2002).

    Article  CAS  Google Scholar 

  7. Hamley, I.W. Nanostructure fabrication using block copolymers. Nanotechnology 14, R39–R54 (2003).

    Article  CAS  Google Scholar 

  8. Napoli, A.V., Valentini, M., Tirelli, N., Müller, M. & Hubbell, J.A. Oxidation-responsive polymeric vesicles. Nature Mater. 3, 183–189 (2004).

    Article  CAS  Google Scholar 

  9. Zhang, L.F. & Eisenberg, A. Multiple morphologies of crew-cut aggregates of polystyrene-B-poly(acrylic acid) block-copolymers. Science 268, 1728–1731 (1995).

    Article  CAS  Google Scholar 

  10. Jain, S. & Bates, F.S. On the origins of morphological complexity in block copolymer surfactants. Science 300, 460–464 (2003).

    Article  CAS  Google Scholar 

  11. Tew, G.N. et al. De novo design of biomimetic antimicrobial polymers. Proc. Natl Acad. Sci. USA 99, 5110–5114 (2002).

    Article  CAS  Google Scholar 

  12. Lipowsky, R, & Sackman, E. (eds) Structure and Dynamics of Membranes (Elsevier, Amsterdem, 1995).

    Google Scholar 

  13. Cevc, G. Phospholipids Handbook (Marcel Decker, New York, 1993).

    Google Scholar 

  14. Chakraborty, A.K. & Golumbfskie, A.J. Polymer adsorption driven self-assembly of nanostructures. Ann. Rev. Phys. Chem. 52, 537–573 (2001).

    Article  CAS  Google Scholar 

  15. Balsara, N.P., Garetz, B.A., Newstein, M.C., Bauer, B.J. & Prosa, T.J. Evolution of microstructure in the liquid and crystal directions in a quenched block copolymer melt. Macromolecules 31, 7668–7675 (1998).

    Article  CAS  Google Scholar 

  16. Forster, S., Zisenis, M., Wenz, E. & Antonietti, M. Micellization of strongly segregated block copolymers. J. Chem. Phys. 104, 9956–9970 (1996).

    Article  Google Scholar 

  17. Needham, D. & Zhelev, D.V. The Mechanochemistry of Lipid Vesicles Examined by Micropipette Manipulation Techniques in Vesicles (ed. Rosoff, M.) Ch. 9 (Marcel Dekker, New York, 2000).

    Google Scholar 

  18. Bermudez, H., Brannan, A.K., Hammer, D.A., Bates, F.S. & Discher, D.E. Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules 35, 8203–8208 (2002).

    Article  CAS  Google Scholar 

  19. Hillmyer, M.A. & Bates, F.S. Synthesis and characterization of model polyalkane-poly(ethylene oxide) block copolymers. Macromolecules 29, 6994–7002 (1996).

    Article  CAS  Google Scholar 

  20. Pakula, T., Karatasos, K., Anastasiadis, S.H. & Fytas, G. Computer simulation of static and dynamic behavior of diblock copolymer melts. Macromolecules 30, 8463–8472 (1997).

    Article  CAS  Google Scholar 

  21. Schultz, A.J., Hall, C.K. & Genzer, J. Computer simulation of copolymer phase behavior. J. Chem. Phys. 117, 10329–10338 (2002).

    Article  CAS  Google Scholar 

  22. Pastor, R.W., Venable, R.M., Karplus, M. & Szabo, A. A simulation based model of nmr T1 relaxation in lipid bilayer vesicles. J. Chem. Phys. 89, 1128–1140 (1988).

    Article  CAS  Google Scholar 

  23. Noguchi, H. & Takasu, M. Fusion pathways of vesicles: A Brownian dynamics simulation. J. Chem. Phys. 115, 9547–9551 (2001).

    Article  CAS  Google Scholar 

  24. Noguchi, H. Fusion and toroidal formation of vesicles by mechanical forces: A Brownian dynamics simulation. J. Chem. Phys. 117, 8130–8137 (2002).

    Article  CAS  Google Scholar 

  25. Srinivas, G. & Bagchi, B. Detection of collapsed and ordered polymer structures by fluorescence resonance energy transfer in stiff homopolymers: Bimodality in the reaction efficiency distribution. J. Chem. Phys. 116, 837–844 (2002).

    Article  CAS  Google Scholar 

  26. Smit, B. et al. Structure of a water/oil interface in the presence of micelles: a computer simulation study. J. Phys. Chem. 95, 6361–6368 (1991).

    Article  CAS  Google Scholar 

  27. Goetz, R., Gompper, G. & Lipowsky, R. Mobility and elasticity of self-assembled membranes. Phys. Rev. Lett. 82, 221–224 (1999).

    Article  CAS  Google Scholar 

  28. Shelley, J.C., Shelley, M.Y., Reeder, R.C., Bandyopadhyay, S. & Klein, M.L. A coarse grain model for phospholipid simulations. J. Phys. Chem. B 105, 4464–4470 (2001).

    Article  CAS  Google Scholar 

  29. Tieleman, D.P. & Marrink, S.J. Potential of mean force of a lipid in a lipid bilayer. Biophys. J. 84, 368–369 (2003).

    Article  Google Scholar 

  30. Tieleman, D.P., Leontiadou, H., Mark, A.E. & Marrink, S.J. Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J. Am. Chem. Soc. 125, 6382–6383 (2003).

    Article  CAS  Google Scholar 

  31. Marrink, S.J. & Tieleman, D.P. Molecular dynamics simulation of a lipid diamond cubic phase. J. Am. Chem. Soc. 123, 12383–12391 (2001).

    Article  CAS  Google Scholar 

  32. Marrink, S.J., Lindahl, E., Edholm, O. & Mark, A.E. Simulation of the spontaneous aggregation of phospholipids into bilayers. J. Am. Chem. Soc. 123, 8638–8639 (2001).

    Article  CAS  Google Scholar 

  33. Marrink, S.J. & Mark, A.E. Effect of undulations on surface tension in simulated bilayers. J. Phys. Chem. B 105, 6122–6127 (2001).

    Article  CAS  Google Scholar 

  34. Marrink, S.J. & Mark, A.E. Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles. J. Am. Chem. Soc. 125, 15233–15242 (2003).

    Article  CAS  Google Scholar 

  35. Nielsen, S.O. & Klein, M.L. Bridging Time Scales: Molecular Simulations for the Next Decade (eds Nielaba, P., Mareschali, M. and Ciccotti, G.) 27–63 (Elsevier Science, Amsterdam, 2003).

    Google Scholar 

  36. Shelley, J.C. et al. Simulations of phospholipids using a coarse grain model. J. Phys. Chem. B 105, 9785–9792 (2001).

    Article  CAS  Google Scholar 

  37. Nielsen, S.O., Lopez, C.F., Moore, P.B., Shelley, J.C. & Klein, M.L. Molecular dynamics investigations of lipid langmuir monolayers using a coarse-grain model. J. Phys. Chem. B 107, 13911–13917 (2003).

    Article  CAS  Google Scholar 

  38. Srinivas, G., Shelley, J.C., Nielsen, S.O., Discher, D.E. & Klein, M.L. Simulation of diblock copolymer self-assembly using a coarse-grain model. J. Phys. Chem. B 108, 8153–8160 (2004).

    Article  CAS  Google Scholar 

  39. Lindahl, E. & Edholm, O. Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J. Chem. Phys. 113, 3882–3893 (2000).

    Article  CAS  Google Scholar 

  40. Feller, S.E., Zhang, Y.H. & Pastor, R.W. Computer-simulation of liquid/liquid interfaces. 2. Surface-tension area dependence of a bilayer and monolayer. J. Chem. Phys. 103, 10267–10276 (1995).

    Article  CAS  Google Scholar 

  41. Feller, S.E. & Pastor, R.W. Constant surface tension simulations of lipid bilayers: The sensitivity of surface areas and compressibilities. J. Chem. Phys. 111, 1281–1287 (1999).

    Article  CAS  Google Scholar 

  42. Goetz, R. & Lipowsky, R. Computer simulations of bilayer membranes: self-assembly and interfacial tension. J. Chem. Phys. 108, 7397–7409 (1998).

    Article  CAS  Google Scholar 

  43. Rao, M. & Levesque, D. Surface structure of a liquid film. J. Chem. Phys. 65, 3233–3236 (1976).

    Article  CAS  Google Scholar 

  44. Bermudez, H., Hammer, D.A. & Discher, D.E. Effect of bilayer thickness on membrane bending rigidity. Langmuir 20, 540–543 (2004).

    Article  CAS  Google Scholar 

  45. Israelachvili, J.N. Intermolecular and Surface Forces (Academic, San Diego, California, 1998).

    Google Scholar 

  46. Mark, J.E. Physical Properties of Polymers Handbook (AIP Series in Polymers and Complex Materials, AIP, New York, 1996).

    Google Scholar 

  47. Lee, J.C.M., Law, R.J. & Discher, D.E. Bending contributions hydration of phospholipid and block copolymer membranes: Unifying correlations between probe fluorescence and vesicle thermoelasticity. Langmuir 17, 3592–3597 (2001).

    Article  CAS  Google Scholar 

  48. Lee, J.C.M., Santore, M., Bates, F.S. & Discher, D.E. From membranes to melts, rouse to reptation: Diffusion in polymersome versus lipid bilayers. Macromolecules 35, 323–326 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank John C. Shelley, Carlos Lopez, Steve Nielsen, Ivaylo Ivanov and Preston B. Moore. This work has been supported by the National Science Foundation (Pennsylvania University's Materials Research Science and Engineering Centre) and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Klein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivas, G., Discher, D. & Klein, M. Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics. Nature Mater 3, 638–644 (2004). https://doi.org/10.1038/nmat1185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing