Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystallographic alignment of high-density gallium nitride nanowire arrays

Abstract

Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics1. Elucidation of the vapour–liquid–solid growth mechanism2 has already enabled precise control over nanowire position and size1,3,4,5,6,7,8, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal–organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) γ-LiAlO2 and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [11̄0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM images of the GaN nanowires.
Figure 2: XRD patterns.
Figure 3: TEM images of the GaN nanowires.
Figure 4: Photoluminescence spectra and polarized XAS.

Similar content being viewed by others

References

  1. Xia, Y. et al. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).

    Article  CAS  Google Scholar 

  2. Wu, Y. & Yang, P. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123, 3165–3166 (2001).

    Article  CAS  Google Scholar 

  3. Wu, Y., Yan, H. & Yang, P. Inorganic semiconductor nanowires: Rational growth, assembly, and novel properties. Chem. Eur. J. 8, 1261–1268 (2002).

    Google Scholar 

  4. Haraguchi, K. et al. Self-organized fabrication of planar GaAs nanowhisker arrays. Appl. Phys. Lett. 69, 386–387 (1996).

    Article  CAS  Google Scholar 

  5. Han, S. et al. Controlled growth of gallium nitride single-crystal nanowires using a chemical vapor deposition method. J. Mater. Res. 18, 245–249 (2003).

    Article  CAS  Google Scholar 

  6. Holmes, J.D. et al. Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471–1473 (2000).

    Article  CAS  Google Scholar 

  7. Ohlsson, B.J., Björk, M.T., Magnusson, M.H., Deppert, K. & Samuelson, L. Size-, shape-, and position-controlled GaAs nano-whiskers. Appl Phys. Lett. 79, 3335–3337 (2001).

    Article  CAS  Google Scholar 

  8. Mårtensson, T. et al. Nanowire arrays defined by nanoimprint lithography. Nano Lett. 4, 699–702 (2004).

    Article  Google Scholar 

  9. Johnson, J.C. et al. Single gallium nitride nanowire lasers. Nature Mater. 1, 106–109 (2002).

    Article  CAS  Google Scholar 

  10. Goldberger, J. et al. Single-crystal gallium nitride nanotubes. Nature 422, 599–602 (2003).

    Article  CAS  Google Scholar 

  11. Huang, Y., Duan, X., Cui, Y. & Lieber, C.M. Gallium nitride nanowire nanodevices. Nano Lett. 2, 101–104 (2002).

    Article  CAS  Google Scholar 

  12. Choi, H. et al. Self-organized GaN quantum wire UV lasers. J. Phys. Chem. 107, 8721–8725 (2003).

    Article  CAS  Google Scholar 

  13. Duan, X. & Lieber, C.M. Laser-assisted catalytic growth of single crystal GaN nanowires. J. Am. Chem. Soc. 122, 188–189 (2000).

    Article  CAS  Google Scholar 

  14. Chen, C. et al. Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc. 123, 2791–2798 (2001).

    Article  CAS  Google Scholar 

  15. Seo, H. et al. Strained gallium nitride nanowires. J. Chem. Phys. 116, 9492–9499 (2002).

    Article  CAS  Google Scholar 

  16. Zhong, Z., Qian, F., Wang, D. & Lieber, C.M. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343–345 (2003).

    Article  CAS  Google Scholar 

  17. Kim, H., Kang, T. & Chung, K. Nanoscale ultraviolet-light-emitting diodes using wide-bandgap gallium nitride nanorods. Adv. Mater. 15, 567–569 (2003).

    Article  CAS  Google Scholar 

  18. Ristic, J. et al. AlGaN nanocolumns grown by molecular beam epitaxy: optical and structural characterization. Phys. Status Solidi A 192, 60–66 (2002).

    Article  CAS  Google Scholar 

  19. Ristic, J. et al. Characterization of GaN quantum discs embedded in AlxGa1-xN nanoclolumns grown by molecular beam epitaxy. Phys. Rev. B 68, 125305 (2003).

    Article  Google Scholar 

  20. Stach, E., Pauzauskie, P., Kuykendall, T., Goldberger, J. & Yang, P. Watching GaN nanowires grow. Nano Lett. 3, 867–869 (2003).

    Article  CAS  Google Scholar 

  21. Kuykendall, T., Pauzauskie, P., Lee, S.K., Zhang, Y. & Yang, P. Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections. Nano Lett. 3, 1063–1066 (2003).

    Article  CAS  Google Scholar 

  22. Huang, M. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    Article  CAS  Google Scholar 

  23. Park, W.I., Yi, G., Kim, M. & Pennucook, S. Quantum confinement observed in ZnO/ZnMgO nanorod heterojunctions. Adv. Mater. 15, 526–529 (2003).

    Article  CAS  Google Scholar 

  24. Bir, G.L. & Pikus, G.E. Symmetry and Strain-induced Effects in Semiconductors (Wiley, New York, 1972).

    Google Scholar 

  25. Waltereit, P. et al. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865–868 (2000).

    Article  CAS  Google Scholar 

  26. Domen, K., Horino, K., Kuramata, A. & Tanahashi, T. Analysis of polarization anisotropy along the c axis in the photoluminescence of wurtzite GaN. Appl. Phys. Lett. 71, 1996–1998 (1997).

    Article  CAS  Google Scholar 

  27. Lawniczak-Jablonska, K. et al. Anisotropy of the nitrogen conduction states in the group III nitrides studied by polarized x-ray absorption spectroscopy. Appl. Phys. Lett. 70, 2711–2713, (1997).

    Article  CAS  Google Scholar 

  28. Lawniczak-Jablonska, K. et al. Electronic states in valence and conduction bands of group-III nitrides: Experiment and theory. Phys. Rev. B 61, 16623–16632 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Camille and Henry Dreyfus Foundation, Beckman Foundation, the National Science Foundation (CAREER, NIRT) and Department of Energy. P. Y. is an Alfred P. Sloan Research Fellow. P. P. and J. G. thank the National Science Foundation for predoctoral fellowship support. Work at the Lawrence Berkeley National Laboratory was supported by the Office of Science, Basic Energy Sciences, Division of Materials Science of the US Department of Energy. We thank the National Center for Electron Microscopy for the use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuykendall, T., Pauzauskie, P., Zhang, Y. et al. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nature Mater 3, 524–528 (2004). https://doi.org/10.1038/nmat1177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing