Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Toughening of nanoporous glasses using porogen residuals

Abstract

Nanoporous glasses are inherently brittle materials that become increasingly fragile with increasing porosity. We show that remarkable increases in fracture energy can be obtained from remnants of the porogen molecules used to create the nanoscale pores. The interfacial fracture energy of ∼2.6 J m−2 for dense methylsilsesquioxane glass films is shown to increase by over one order of magnitude to >30 J m−2 for glasses containing 50 vol.% porosity. The increased fracture resistance is related to a powerful molecular-bridging mechanism that was modelled using bridging mechanics. The study demonstrates that significant increases in interfacial fracture energy may be obtained using strategies involving controlled decomposition of the porogen molecule during processing of nanoporous glasses. The implications are important for a range of emerging optical, electronic and biological technologies that use nanoporous thin films, but are limited by the degradation of mechanical properties with increasing porosity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the thin-film structure containing the nanoporous MSSQ layer.
Figure 2
Figure 3
Figure 4
Figure 5: Characterization of the fracture surfaces adjacent to the MSSQ-LO films, which debonded along the MSSQ/SiO2 interface.

Similar content being viewed by others

References

  1. Miller, R.D. et al. Porous organosilicates using sacrificial macromolecular porogens. Polym. Mater. Sci. Eng. 87, 425–426 (2002).

    CAS  Google Scholar 

  2. Hedrick, J.L. et al. Templating nanoporosity in thin-film dielectric insulators. Adv. Mater. 10, 1049–1053 (1998).

    Article  CAS  Google Scholar 

  3. Liu, J. et al. Porosity effect on the dielectric constant and thermomechanical properties of organosilicate films. Appl. Phys. Lett. 81, 4180–4182 (2002).

    Article  CAS  Google Scholar 

  4. Maidenberg, D.A., Volksen, W., Miller, R.D. & Dauskardt, R.H. in International Interconnect Technology Conference 48–50 (IEEE, 1–4 June, Burlingame, California, 2003).

    Google Scholar 

  5. Lane, M., Dauskardt, R.H., Krishna, N. & Hashim, I. Adhesion and reliability of copper interconnects with Ta and TaN barrier layers. J. Mater. Res. 15, 203–211 (2000).

    Article  CAS  Google Scholar 

  6. Maidenberg, D.A., Volksen, W., Miller, R.D. & Dauskardt, R.H. in Advances in Low-k Dielectrics and Thermally Stable Polymers for Microelectronics (eds Sachdev, H. S., Khojasteh, M. M. & McHerron, D.) 301–309 (Society of Plastics Engineers, McAfee, New Jersey, 2000).

    Google Scholar 

  7. Cook, R.F., Liniger, E.G., Klaus, D.P., Simonyi, E.E. & Cohen, S.A. in Low-Dielectric Constants IV 33–38 (MRS meeting 14–16 April, San Francisco, California, 1998).

    Google Scholar 

  8. Kim, S.M., Yoon, D.Y., Nguyen, C.V., Jie, H. & Jaffe, R.L. in Low-Dielectric Constant Materials IV 39–47 (MRS meeting 14–16 April, San Francisco, California, 1998).

    Google Scholar 

  9. Miller, R.D. et al. in Low-Dielectric Constant Materials V 3–15 (MRS meeting 5–8 April, San Francisco, California, 1999).

    Google Scholar 

  10. Nguyen, C.V. et al. in Low and high Dielectric Constant Materials: Materials Science, Processing, and Reliability 38–45 (ECS meeting, 2–6 May, Seattle, Washington, 1999).

    Google Scholar 

  11. Kamigaito, M., Ando, T. & Sawamoto, M. Metal-catalyzed living radical polymerization. Chem. Rev. 101, 3689–3745 (2001).

    Article  CAS  Google Scholar 

  12. Hawker, C.J., Bosman, A.W. & Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 101, 3661–3688 (2001).

    Article  CAS  Google Scholar 

  13. Lee, H.J. et al. Structural comparison of hydrogen silsesquioxane based porous low-k thin films prepared with varying process conditions. Chem. Mater. 14, 1845–1852 (2002).

    Article  CAS  Google Scholar 

  14. Huang, E. et al. Pore size distributions in nanoporous methyl silsesquioxane films as determined by small angle X-ray scattering. Appl. Phys. Lett. 81, 2232–2234 (2002).

    Article  CAS  Google Scholar 

  15. Liu, P.-T., Ting-Chang, C., Yi-Shian, M. & Sze, S.M. Enhancing the oxygen plasma resistance of low-k methylsilsesquioxane by H2 plasma treatment. Jpn J. Appl. Phys. 38, 3482–3486 (1999).

    Article  CAS  Google Scholar 

  16. Ouyang, M., Yuan, C., Muisener, R.J., Boulares, A. & Koberstein, J.T. Conversion of some siloxane polymers to silicon oxide by UV/Ozone photochemical processes. Chem. Mater. 12, 1591–1596 (2000).

    Article  CAS  Google Scholar 

  17. Liu, P.T. et al. The effects of plasma treatment for low dielectric constant hydrogen silsesquioxane (HSQ). Thin Solid Films 332, 345–350 (1998).

    Article  CAS  Google Scholar 

  18. Kim, H.R., Park, H.H., Hyun, S.H. & Yeom, G.Y. Effect of O2 plasma treatment on the properties of SiO2 aerogel film. Thin Solid Films 332, 444–449 (1998).

    Article  CAS  Google Scholar 

  19. Kim, H.-C. et al. Neutron reflectivity on nanoporous poly(methylsilsesquioxane) thin films. Chem. Mater. 15, 609–611 (2003).

    Article  CAS  Google Scholar 

  20. Lane, M., Dauskardt, R.H., Vainchtein, A. & Huajian, G. Plasticity contributions to interface adhesion in thin-film interconnect structures. J. Mater. Res. 15, 2758–2769 (2000).

    Article  CAS  Google Scholar 

  21. Strohband, S. & Dauskardt, R.H. Interface separation in residually stressed thin-film structures. Interface Sci. 11, 309–317 (2003).

    Article  Google Scholar 

  22. Wei, Y. & Hutchinson, J.W. Models of interface separation accompanied by plastic dissipation at multiple scales. Intl J. Fracture 95, 1–4 (1999).

    Article  CAS  Google Scholar 

  23. Bao, G. & Suo, Z. Remarks on crack bridging concepts. Appl. Mech. Rev. 45, 355–366 (1992).

    Article  Google Scholar 

  24. Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H. & Gaub, H.E. How strong is a covalent bond? Science 283, 1727–1730 (1999).

    Article  CAS  Google Scholar 

  25. Dauskardt, R.H., Lane, M., Ma, Q. & Krishna, N. Adhesion and debonding of multi-layer thin film structures. Eng. Fracture Mech. 61, 141–162 (1998).

    Article  Google Scholar 

  26. Hughey, M. et al. Four-point bend adhesion measurements of copper and permalloy systems. Eng. Fracture Mech. 71, 245–261 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

Work was supported primarily by a seed grant from the Stanford-CPIMA MRSEC Program of the National Science Foundation under Award Number DMR -0213618.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold H. Dauskardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maidenberg, D., Volksen, W., Miller, R. et al. Toughening of nanoporous glasses using porogen residuals. Nature Mater 3, 464–469 (2004). https://doi.org/10.1038/nmat1153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing