Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface

Abstract

The presence of excess hydrogen at the interface between a metal substrate and a protective oxide can cause blistering1,2,3 and spallation of the scale4,5,6,7,8. However, it remains unclear how nanoscale bubbles manage to reach the critical size in the first place. Here, we perform in situ environmental transmission electron microscopy experiments of the aluminium metal/oxide interface under hydrogen exposure. It is found that once the interface is weakened by hydrogen segregation, surface diffusion of Al atoms initiates the formation of faceted cavities on the metal side, driven by Wulff reconstruction. The morphology and growth rate of these cavities are highly sensitive to the crystallographic orientation of the aluminium substrate. Once the cavities grow to a critical size, the internal gas pressure can become great enough to blister the oxide layer. Our findings have implications for understanding hydrogen damage of interfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the development of a blister on a metal surface.
Figure 2: Sample morphology before and after hydrogen exposure.
Figure 3: Cavity nucleation and growth below the metal/oxide interface.
Figure 4: Blister formation accompanying the receding faceted surface.
Figure 5: Orientation-dependent blister distribution.

Similar content being viewed by others

References

  1. Rozenak, P. Hemispherical bubbles growth on electrochemically charged aluminum with hydrogen. Int. J. Hydrog. Energy 32, 2816–2823 (2007).

    Article  CAS  Google Scholar 

  2. Liu, Y. et al. Detachment of alumina films from aluminium by 100 keV H+ ions. Surf. Interface Anal. 33, 318–321 (2002).

    Article  CAS  Google Scholar 

  3. Subanovic, M. et al. Blistering of MCrAlY-coatings in H2/H2O-atmospheres. Corros. Sci. 51, 446–450 (2009).

    Article  CAS  Google Scholar 

  4. Sergo, V. & Clarke, D. R. Observation of subcritical spall propagation of a thermal barrier coating. J. Am. Ceram. Soc. 81, 3237–3242 (1998).

    Article  CAS  Google Scholar 

  5. Saunders, S. R. J., Monteiro, M. & Rizzo, F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review. Prog. Mater. Sci. 53, 775–837 (2008).

    Article  CAS  Google Scholar 

  6. Smialek, J. L. Moisture-induced TBC spallation on turbine blade samples. Surf. Coat. Technol. 206, 1577–1585 (2011).

    Article  CAS  Google Scholar 

  7. Haynes, J. A., Unocic, K. A. & Pint, B. A. Effect of water vapor on the 1100 °C oxidation behavior of plasma-sprayed TBCs with HVOF NiCoCrAlX bond coatings. Surf. Coat. Technol. 215, 39–45 (2013).

    Article  CAS  Google Scholar 

  8. Hultquist, G., Tveten, B. & Hornlund, E. Hydrogen in chromium: Influence on the high-temperature oxidation kinetics in H2O, oxide-growth mechanisms, and scale adherence. Oxid. Met. 54, 1–10 (2000).

    Article  CAS  Google Scholar 

  9. Bailey, P. et al. Damage of alumina films by medium energy hydrogen and helium ions. Nucl. Instrum. Methods Phys. Res. B 197, 265–270 (2002).

    Article  CAS  Google Scholar 

  10. Tokunaga, K. et al. Blister formation and deuterium retention on tungsten exposed to low energy and high flux deuterium plasma. J. Nucl. Mater. 337, 887–891 (2005).

    Article  Google Scholar 

  11. Lu, G. H., Zhou, H. B. & Becquart, C. S. A review of modelling and simulation of hydrogen behaviour in tungsten at different scales. Nucl. Fusion 54, 086001 (2014).

    Article  Google Scholar 

  12. Scamans, G. M. & Rehal, A. S. Electron metallography of the aluminium-water vapour reaction and its relevance to stress-corrosion susceptibility. J. Mater. Sci. 14, 2459–2470 (1979).

    Article  CAS  Google Scholar 

  13. Sznajder, M. & Geppert, U. in Advances in Solar Sailing (ed. Macdonald, M.) 559–571 Ch. 35, (Springer, 2014).

    Book  Google Scholar 

  14. Condon, J. B. & Schober, T. Hydrogen bubbles in metals. J. Nucl. Mater. 207, 1–24 (1993).

    Article  CAS  Google Scholar 

  15. Liu, Y. L. et al. Vacancy trapping mechanism for hydrogen bubble formation in metal. Phys. Rev. B 79, 172103 (2009).

    Article  Google Scholar 

  16. Flower, H. M. Electron-irradiation induced aqueous corrosion of aluminum and magnesium. Radiat. Eff. Defects Solids 33, 173–179 (1977).

    Article  CAS  Google Scholar 

  17. Bond, G. M., Robertson, I. M. & Birnbaum, H. K. On the determination of the hydrogen fugacity in an environmental cell TEM facility. Scr. Metall. 20, 653–658 (1986).

    Article  CAS  Google Scholar 

  18. Das, S. K. & Kaminsky, M. Radiation Effects on Solid Surfaces Vol. 158, Ch. 5, 112–170 (Advances in Chemistry, American Chemical Society, 1976).

    Book  Google Scholar 

  19. Tian, L., Li, J., Sun, J., Ma, E. & Shan, Z. W. Visualizing size-dependent deformation mechanism transition in Sn. Sci. Rep. 3, 2113 (2013).

    Article  Google Scholar 

  20. Sun, J. et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nature Mater. 13, 1007–1012 (2014).

    Article  CAS  Google Scholar 

  21. Oriani, R. A. & Josephic, P. H. Equilibrium aspects of hydrogen-induced cracking of steels. Acta Metall. 22, 1065–1074 (1974).

    Article  CAS  Google Scholar 

  22. Oriani, R. A. Hydrogen embrittlement of steels. Annu. Rev. Mater. Sci. 8, 327–357 (1978).

    Article  CAS  Google Scholar 

  23. Daw, M. S. & Baskes, M. I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285–1288 (1983).

    Article  CAS  Google Scholar 

  24. Mullins, W. W. Flattening of a nearly plane solid surface due to capillarity. J. Appl. Phys. 30, 77–83 (1959).

    Article  Google Scholar 

  25. Keeffe, M. E., Umbach, C. C. & Blakely, J. M. Surface self-diffusion on Si from the evolution of periodic atomic step arrays. J. Phys. Chem. Solids 55, 965–973 (1994).

    Article  CAS  Google Scholar 

  26. Tu, K. N. Solder Joint Technology Vol. 117, Ch. 8, 211–243 (Springer Series in Materials Science, Springer, 2007).

    Book  Google Scholar 

  27. Shewmon, P. Diffusion in Solids Ch. 6, 189–222 (Minerals, Metals & Materials Society, 1989).

    Google Scholar 

  28. Vitos, L., Ruban, A., Skriver, H. L. & Kollar, J. The surface energy of metals. Surf. Sci. 411, 186–202 (1998).

    Article  CAS  Google Scholar 

  29. Leyens, C., Fritscher, K., Gehrling, R., Peters, M. & Kaysser, W. A. Oxide scale formation on an MCrAlY coating in various H2–H2O atmospheres. Surf. Coat. Technol. 82, 133–144 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Natural Science Foundation of China (51231005, 11132006, 51401159 and 51321003), and 973 Programs of China (2012CB619402). We also appreciate the support from the 111 project (B06025). J.L. acknowledges support by NSF DMR-1120901 and DMR-1410636. E.M. acknowledges support from US DoE-BES-DMSE, under Contract No. DE-FG02-09ER46056. We also thank P. H. Lu and M. Li for assistance in EELS characterization and data processing.

Author information

Authors and Affiliations

Authors

Contributions

Z.-W.S., J.L. and E.M. conceived and designed the project. D.-G.X. conducted the experimental work. D.-G.X., Z.-W.S., J.L. and E.M. wrote the paper. All authors contributed to discussions of the results.

Corresponding authors

Correspondence to Ju Li, Evan Ma or Zhi-Wei Shan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2023 kb)

Supplementary Information

Supplementary Movie 1 (MP4 27993 kb)

Supplementary Information

Supplementary Movie 2 (MP4 10575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, DG., Wang, ZJ., Sun, J. et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface. Nature Mater 14, 899–903 (2015). https://doi.org/10.1038/nmat4336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4336

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing