Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrahigh interlayer friction in multiwalled boron nitride nanotubes

Abstract

Friction at the nanoscale has revealed a wealth of behaviours that depart strongly from the long-standing macroscopic laws of Amontons–Coulomb1,2. Here, by using a ‘Christmas cracker’-type of system in which a multiwalled nanotube is torn apart between a quartz-tuning-fork-based atomic force microscope (TF–AFM) and a nanomanipulator, we compare the mechanical response of multiwalled carbon nanotubes (CNTs) and multiwalled boron nitride nanotubes (BNNTs) during the fracture and telescopic sliding of the layers. We found that the interlayer friction for insulating BNNTs results in ultrahigh viscous-like dissipation that is proportional to the contact area, whereas for the semimetallic CNTs the sliding friction vanishes within experimental uncertainty. We ascribe this difference to the ionic character of the BN, which allows charge localization. The interlayer viscous friction of BNNTs suggests that BNNT membranes could serve as extremely efficient shock-absorbing surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiwalled nanotube Christmas-cracker experimental set-up.
Figure 2: Frequency shift measured by the tuning fork versus the displacement of the piezoscanner during complete tensile load experiments.
Figure 3: Interlayer friction in multiwalled nanotubes.

Similar content being viewed by others

References

  1. Vanossi, A., Manini, N., Urbakh, M., Zapperi, S. & Tosatti, E. Modeling friction: From nanoscale to mesoscale. Rev. Mod. Phys. 85, 529 (2013).

    Article  CAS  Google Scholar 

  2. Persson, B. N. J. Sliding Friction — Physical Principle and Applications 2nd edn (Springer, 2000).

    Book  Google Scholar 

  3. Krim, J. Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films. Adv. Phys. 61, 155–323 (2012).

    Article  CAS  Google Scholar 

  4. Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004).

    Article  Google Scholar 

  5. Urbakh, M. & Meyer, E. The renaissance of friction. Nature Mater. 9, 8–10 (2010).

    Article  CAS  Google Scholar 

  6. Socoliuc, A. et al. Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313, 207–210 (2006).

    Article  CAS  Google Scholar 

  7. Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

    Article  CAS  Google Scholar 

  8. Lucas, M. et al. Hindered rolling and friction anisotropy in supported nanotubes. Nature Mater. 87, 876–881 (2009).

    Article  Google Scholar 

  9. Jacobs, T. D. B. & Carpick, R. W. Nanoscale wear as a stress-assisted chemical reaction. Nature Nanotech. 8, 108–112 (2013).

    Article  CAS  Google Scholar 

  10. Kisiel, M. et al. Suppression of electronic friction on Nb films in the superconducting state. Nature Mater. 10, 119–122 (2011).

    Article  CAS  Google Scholar 

  11. Ogletree, D. F., Park, J. Y., Salmeron, M. & Thiel, P. A. Electronic control of friction in silicon pn junctions. Science 313, 186 (2006).

    Article  Google Scholar 

  12. Gostman, B. Tribology: sliding on vacuum. Nature Mater. 10, 87–88 (2011).

    Article  Google Scholar 

  13. Siria, A. et al. Electron fluctuation induced resonance broadening in nano electromechanical systems: The origin of shear force in vacuum. Nano Lett. 12, 3551–3556 (2012).

    Article  CAS  Google Scholar 

  14. Cumings, J. & Zettl, A. Low-friction nanoscale linear bearing realized from multiwall nanotubes. Science 289, 602–604 (2000).

    Article  CAS  Google Scholar 

  15. Kis, A. Jensen, K. Aloni, S. Mickelson & W. Zettl, A. Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. Phys. Rev. Lett. 97, 025501 (2006).

    Article  CAS  Google Scholar 

  16. Zhang, R. et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nature Nanotech. 8, 912–916 (2013).

    Article  CAS  Google Scholar 

  17. Arenal, R., Blase, X. & Loiseau, A. Boron-nitride and boron-carbonitride nanotubes: synthesis, characterization and theory. Adv. Phys. 59, 101–179 (2010).

    Article  CAS  Google Scholar 

  18. Siria, A. et al. Giant osmotic energy conversion in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).

    Article  CAS  Google Scholar 

  19. Karrai, K. & Grober, R. D. Piezoelectric tip–sample distance control for near field optical microscopes. Appl. Phys. Lett. 66, 1842 (1995).

    Article  CAS  Google Scholar 

  20. Giessibl, F. J. High-speed froce sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 73, 3956 (1998).

    Article  CAS  Google Scholar 

  21. Labardi, M. & Allegrini, M. Non-contact friction force microscopy based on quartz tuning fork sensors. Appl. Phys. Lett. 89, 174104 (2006).

    Article  Google Scholar 

  22. Rodrigues, M. et al. Probing the elastic properties of individual nanostructures by combining in-situ atomic force micrscopy and micro-X-ray diffraction. Appl. Phys. Lett. 94, 23109 (2009).

    Article  Google Scholar 

  23. Perisanu, S. et al. Mechanical properties of SiC nanowires determined by scanning electron and field emission microscopies. Phys. Rev. B. 77, 165434 (2008).

    Article  Google Scholar 

  24. Poncharal, P., Wang, Z. L., Ugarte, D. & de Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999).

    Article  CAS  Google Scholar 

  25. Bechelany, M. et al. Preparation of BN microtubes/nanotubes with unique chemical process. J. Phys. Chem. C 112, 18325 (2008).

    Article  CAS  Google Scholar 

  26. Celik-Aktas, A., Zuo, J-M., Stubbins, J. F., Tang, C. & Bando, Y. Double-helix structure in multiwall boron nitride nanotubes. Acta Crystallogr. A61, 533–541 (2005).

    Article  CAS  Google Scholar 

  27. Garel, J. et al. Ultrahigh torsional stiffness and strength of boron nitride nanotubes. Nano Lett. 12, 6347–6352 (2012).

    Article  CAS  Google Scholar 

  28. Chui, H- C., Dogan, S., Volkmann, M., Klinke, C. & Riedo, E. Adhesion and size dependent friction anisotropy in boron nitride nanotubes. Nanotechnology 23, 455706 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

A.S. and L.B. thank M.L. Bocquet for many fruitful discussions on CNTs and BNNTs. P.P. and P.V. thank N. Blanchard for support in TEM imaging of the nanotubes. The authors acknowledge support of an ERC advanced grant, project Micromegas.

Author information

Authors and Affiliations

Authors

Contributions

A.S. conceived the project. A.N. performed the experiments. A.N., A.S. and L.B. performed the data analysis. A.N. and A.S. conceived and realized the experimental set-up. P.P. and P.V. characterized the nanotubes. A.S. and L.B. wrote the article with inputs from A.N. and P.P. A.S. and L.B. supervised the project.

Corresponding author

Correspondence to A. Siria.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1681 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niguès, A., Siria, A., Vincent, P. et al. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. Nature Mater 13, 688–693 (2014). https://doi.org/10.1038/nmat3985

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3985

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing