Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vacancy defects and monopole dynamics in oxygen-deficient pyrochlores

Abstract

The idea of magnetic monopoles in spin ice has enjoyed much success at intermediate temperatures, but at low temperatures a description in terms of monopole dynamics alone is insufficient. Recently, numerical simulations were used to argue that magnetic impurities account for this discrepancy by introducing a magnetic equivalent of residual resistance in the system. Here we propose that oxygen deficiency is the leading cause of magnetic impurities in as-grown samples, and we determine the defect structure and magnetism in Y2Ti2O7−δ using diffuse neutron scattering and magnetization measurements. These defects are eliminated by oxygen annealing. The introduction of oxygen vacancies causes Ti4+ to transform to magnetic Ti3+ with quenched orbital magnetism, but the concentration is anomalously low. In the spin-ice material Dy2Ti2O7 we find that the same oxygen-vacancy defects suppress moments on neighbouring rare-earth sites, and that these magnetic distortions markedly slow down the long-time monopole dynamics at sub-Kelvin temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxygen-vacancy defect structure in Y2Ti2O7−δ.
Figure 2: Composition dependence of the diffuse scattering.
Figure 3: Magnetism on the Ti ions in Y2Ti2O7−δ.
Figure 4: Defect structure and magnetism on the Dy ions in Dy2Ti2O7−δ.
Figure 5: Monopole trapping by oxygen vacancies in Dy2Ti2O7.

Similar content being viewed by others

References

  1. Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7 . Phys. Rev. Lett. 79, 2554–2557 (1997).

    Article  CAS  Google Scholar 

  2. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    Article  CAS  Google Scholar 

  3. Ramirez, A. P., Hayashi, A., Cava, R. J., Siddharthan, R. B. & Shastry, S. Zero-point entropy in ‘spin ice’. Nature 399, 333–336 (1999).

    Article  CAS  Google Scholar 

  4. Siddharthan, R. Ising pyrochlore magnets: Low temperature properties, ice rules and beyond. Phys. Rev. Lett. 83, 1854–1857 (1999).

    Article  CAS  Google Scholar 

  5. Den Hertog, B. C. & Gingras, M. J. P. Dipolar interactions and origin of spin ice in Ising pyrochlore magnets. Phys. Rev. Lett. 84, 3430–3433 (2000).

    Article  CAS  Google Scholar 

  6. Pauling, L. The structure and entropy of ice and other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935).

    Article  CAS  Google Scholar 

  7. Castelnovo, C., Moessner, R. & Sondhi, S. L. Spin ice, fractionalization and topological order. Annu. Rev. Condens. Matter Phys. 3, 35–55 (2012).

    Article  CAS  Google Scholar 

  8. Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).

    Article  CAS  Google Scholar 

  9. Morris, D. J. P. et al. Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7 . Science 326, 411–414 (2009).

    Article  CAS  Google Scholar 

  10. Fennel, T. et al. Magnetic Coulomb phase in the spin ice Ho2Ti2O7 . Science 326, 415–417 (2009).

    Article  Google Scholar 

  11. Kadowaki, H. et al. Observation of magnetic monopoles in spin ice. J. Phys. Soc. Jpn 78, 103706 (2009).

    Article  Google Scholar 

  12. Giblin, S. R., Bramwell, S. T., Holdsworth, P., Prabhakaran, D. & Terry, I. Creation and measurement of long-lived magnetic monopole currents in spin ice. Nature Phys. 7, 252–258 (2011).

    Article  CAS  Google Scholar 

  13. Snyder, J. et al. Low temperature spin freezing in the Dy2Ti2O7 spin ice. Phys. Rev. B 69, 064414 (2004).

    Article  Google Scholar 

  14. Ryzhkin, I. A. Magnetic relaxation in rare-earth oxide pyrochlores. J. Exp. Theoret. Phys. 101, 481–486 (2005).

    Article  CAS  Google Scholar 

  15. Jaubert, L. D. C. & Holdsworth, P. C. W. Signature of magnetic monopole and Dirac string dynamics in spin ice. Nature Phys. 5, 258–261 (2009).

    Article  CAS  Google Scholar 

  16. Quilliam, J. A., Yaraskavitch, I. R., Dabkowska, H. A., Gaulin, B. D. & Kycia, J. B. Dynamics of the magnetic susceptibility deep in the Coulomb phase of the dipolar spin ice material Ho2Ti2O7 . Phys. Rev. B 83, 094424 (2011).

    Article  Google Scholar 

  17. Matsuhira, K. et al. Spin dynamics at very low temperature in spin ice Dy2Ti2O7 . J. Phys. Soc. Jpn 80, 123711 (2011).

    Article  Google Scholar 

  18. Yaraskavitch, L. R. et al. Spin dynamics in the frozen state of the dipolar spin ice material Dy2Ti2O7 . Phys. Rev. B 85, 020410 (2012).

    Article  Google Scholar 

  19. Revell, H. M. et al. Evidence of impurity and boundary effects on magnetic monopole dynamics in spin ice. Nature Phys. 9, 34–37 (2013).

    Article  CAS  Google Scholar 

  20. Lau, G. C. et al. Zero-point entropy in stuffed spin ice. Nature Phys. 2, 249–253 (2006).

    Article  CAS  Google Scholar 

  21. Longo, J. M., Raccah, P. M. & Goodenough, J. B. Pb2M2O7−x (M = Ru, Ir, Re)–preparation and properties of oxygen deficient pyrochlores. Mater. Res. Bull. 4, 191–202 (1969).

    Article  CAS  Google Scholar 

  22. Subramanian, M. A., Aravamudan, G. & Rao, G. V. S. Oxide pyrochlores–a review. Prog. Solid. State Chem. 15, 55–143 (1983).

    Article  CAS  Google Scholar 

  23. Welberry, T. R. IUCr Monographs on Crystallography 16, Diffuse X-ray scattering and models of disorder. (OUP, (2004).

    Google Scholar 

  24. Welberry, T. R. Diffuse X-ray scattering and models of disorder. Rep. Prog. Phys. 48, 1543–1593 (1985).

    Article  CAS  Google Scholar 

  25. Gutmann, M. J. Accelerated computation of diffuse scattering patterns and application to magnetic neutron scattering. J. Appl. Cryst. 43, 250–255 (2010).

    Article  CAS  Google Scholar 

  26. Ross, K. A. et al. Lightly stuffed pyrochlore structure of single-crystalline Yb2Ti2O7 grown by the optical floating technique. Phys. Rev. B 86, 174424 (2012).

    Article  Google Scholar 

  27. Hayes, W. & Stoneham, A. M. Defects and Defect Processes in Non-Metallic Solids (Wiley, (1984).

    Google Scholar 

  28. Henley, C. L. NMR relaxation in spin ice due to diffusing emergent monopoles I. Preprint at http://arxiv.org/abs/1210.8137 (2012)

  29. Biltmo, A. & Henelius, P. Unreachable glass transition in dilute dipolar magnet. Nature Commun. 3, 857 (2012).

    Article  CAS  Google Scholar 

  30. Paulsen, C. et al. Far-from-equilibrium monopole dynamics in spin ice. Nature Phys. 10, 135–139 (2014).

    Article  CAS  Google Scholar 

  31. Castelnovo, C., Moessner, R. & Sondhi, S. L. Thermal quenches in spin ice. Phys. Rev. Lett. 104, 107201 (2010).

    Article  CAS  Google Scholar 

  32. Levis, D. & Cugliandolo, L. F. Out of equilibrium dynamics in the bidimensional spin-ice model. Europhys. Lett. 97, 30002 (2012).

    Article  Google Scholar 

  33. Levis, D. & Cugliandolo, L. F. Defects dynamics following thermal quenches in square spin-ice. Phys. Rev. B 87, 214302 (2013).

    Article  Google Scholar 

  34. Mostame, S., Castelnovo, C., Moessner, R. & Sondhi, S. L. Tunable nonequilibrium dynamics of field quenches in spin ice. Proc. Natl Acad. Sci. USA 111, 640–645 (2014).

    Article  CAS  Google Scholar 

  35. Prabhakaran, D. & Boothroyd, A. T. Crystal growth of spin-ice pyrochlores by the floating-zone method. J. Cryst. Growth 318, 1053–1056 (2011).

    Article  CAS  Google Scholar 

  36. Hutchings, M. T. in Solid State Physics 16 (eds Seitz, F. & Turnbull, D.) Point-charge calculations of energy levels of magnetic ions in crystalline electric fields. –273 (Academic, 1964).

    Google Scholar 

Download references

Acknowledgements

We thank M. Jura and T. Lehner for their help, and B. Gaulin, M. T. Hutchings, K. Refson, R. Moessner, S. L. Sondi, S. Dutton and U. Karahasanovic for helpful discussions. We acknowledge support from the South East Physics Network and the Hubbard Theory Consortium, and we are grateful for the financial support and hospitality of ISIS. This work was supported in part by EPSRC grants EP/G049394/1, EP/H033939/1 and EP/K028960/1, NSERC, the Helmholtz Virtual Institute ‘New States of Matter and Their Excitations’, and the EPSRC NetworkPlus on ‘Emergence and Physics far from Equilibrium’.

Author information

Authors and Affiliations

Authors

Contributions

J.P.G., C.C. and D. Prabhakaran designed the research. The neutron measurements were performed by G.S., M.J.G. and J.P.G.; the X-ray diffraction was performed by D.G.P. The crystals were grown by D. Prabhakaran The d.c. magnetization was measured by D. Prabhakaran and G.S. and the magnetic relaxation measurements were performed by D. Pomaranski, C.M. and J.B.K. Theoretical modelling and simulation was by G.S., M.J.G. and C.C. The manuscript was drafted by J.P.G., C.C. and G.S. and all authors participated in the writing and review of the final draft.

Corresponding author

Correspondence to J. P. Goff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sala, G., Gutmann, M., Prabhakaran, D. et al. Vacancy defects and monopole dynamics in oxygen-deficient pyrochlores. Nature Mater 13, 488–493 (2014). https://doi.org/10.1038/nmat3924

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3924

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing