Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes

Subjects

Abstract

Materials with reduced dimensionality have attracted much interest in various fields of fundamental and applied science. True one-dimensional (1D) crystals with single-atom thickness have been realized only for few elemental metals (Au, Ag) or carbon, all of which showed very short lifetimes under ambient conditions. We demonstrate here a successful synthesis of stable 1D ionic crystals in which two chemical elements, one being a cation and the other an anion, align alternately inside carbon nanotubes. Unusual dynamical behaviours for different atoms in the 1D lattice are experimentally corroborated and suggest substantial interactions of the atoms with the nanotube sheath. Our theoretical studies indicate that the 1D ionic crystals have optical properties distinct from those of their bulk counterparts and that the properties can be engineered by introducing atomic defects into the chains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CsI atomic chains encapsulated in double-walled carbon nanotubes.
Figure 2: Inverse intensity in the ADF profile of Cs and I atoms.
Figure 3: Fully optimized atomic structures of CsI chains in CNTs with different diameters.
Figure 4: Atom-by-atom spectroscopy for CsI atomic chains with vacancies and edges.
Figure 5: Variation of DOS corresponding to the structures of CsI atomic chains.

Similar content being viewed by others

References

  1. Neto, A., Guinea, F., Peres, N., Novoselov, K. & Geim, A. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  Google Scholar 

  2. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  3. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  4. Kondo, Y. & Takayanagi, K. Synthesis and characterization of helical multi-shell gold nanowires. Science 289, 606–608 (2000).

    Article  CAS  Google Scholar 

  5. Hong, B., Bae, S., Lee, C., Jeong, S. & Kim, K. Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science 294, 348–351 (2001).

    Article  CAS  Google Scholar 

  6. Bettini, J. et al. Experimental realization of suspended atomic chains composed of different atomic species. Nature Nanotech. 1, 182–185 (2006).

    Article  CAS  Google Scholar 

  7. Cretu, O. et al. Electrical transport measured in atomic carbon chains. Nano Lett. 13, 3487–3493 (2013).

    Article  CAS  Google Scholar 

  8. Jin, C., Lan, H., Peng, L., Suenaga, K. & Iijima, S. Deriving carbon atomic chains from graphene. Phys. Rev. Lett. 102, 205501 (2009).

    Article  Google Scholar 

  9. Chuvilin, A., Meyer, J. C., Algara-Siller, G. & Kaiser, U. From graphene constrictions to single carbon chains. New J. Phys. 11, 083019 (2009).

    Article  Google Scholar 

  10. Meyer, R. R. et al. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 289, 1324–1326 (2000).

    Article  CAS  Google Scholar 

  11. Sloan, J., Kirkland, A. I., Hutchison, J. L. & Green, M. L. H. Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem. Commun. 2002, 1319–1332 (2002).

    Article  Google Scholar 

  12. Sloan, J., Kirkland, A. I., Hutchison, J. L. & Green, M. L. H. Aspects of crystal growth within carbon nanotubes. C. R. Phys. 4, 1063–1074 (2003).

    Article  CAS  Google Scholar 

  13. Smith, B. W., Monthioux, M. & Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 396, 323–324 (1998).

    Article  CAS  Google Scholar 

  14. Warner, J. et al. Capturing the motion of molecular nanomaterials encapsulated within carbon nanotubes with ultrahigh temporal resolution. ACS Nano 3, 3037–3044 (2009).

    Article  CAS  Google Scholar 

  15. Guan, L., Suenaga, K., Okubo, S., Okazaki, T. & Iijima, S. Metallic wires of lanthanum atoms inside carbon nanotubes. J. Am. Chem. Soc. 130, 2162–2163 (2008).

    Article  CAS  Google Scholar 

  16. Liu, Z. et al. Self-assembled double ladder structure formed inside carbon nanotubes by encapsulation of H8Si8O12 . ACS Nano 3, 1160–1166 (2009).

    Article  CAS  Google Scholar 

  17. Koshino, M. et al. Imaging of single organic molecules in motion. Science 316, 853 (2007).

    Article  CAS  Google Scholar 

  18. Kitaura, R. et al. High yield synthesis and characterization of the structural and magnetic properties of crystalline ErCl3 nanowires in single-walled carbon nanotube templates. Nano Res. 1, 152–157 (2008).

    Article  CAS  Google Scholar 

  19. Hashimoto, A. et al. Atomic correlation between adjacent graphene layers in double-wall carbon nanotubes. Phys. Rev. Lett. 94, 045504 (2005).

    Article  Google Scholar 

  20. Pies, W. & Weiss, A. Crystal Structure Data of Inorganic Compounds: Key Elements: F, Cl, Br, I (VII th Main Group). Halides and Complex Halides 592–593 (Springer, 1973).

    Google Scholar 

  21. Pennycook, S. Z-contrast STEM for materials science. Ultramicroscopy 30, 58–69 (1989).

    Article  Google Scholar 

  22. Krivanek, O. L. et al. Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110, 935–945 (2010).

    Article  CAS  Google Scholar 

  23. Suenaga, K. et al. Evidence for the intramolecular motion of Gd atoms in a Gd2@C92 nanopeapod. Nano Lett. 3, 1395–1398 (2003).

    Article  CAS  Google Scholar 

  24. Algara-Siller, G., Kurasch, S., Sedighi, M., Lehtinen, O. & Kaiser, U. The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene. Appl. Phys. Lett. 103, 203107 (2013).

    Article  Google Scholar 

  25. Fan, X. et al. Atomic arrangement of iodine atoms inside single-walled carbon nanotubes. Phys. Rev. Lett. 84, 4621–4624 (2000).

    Article  CAS  Google Scholar 

  26. Van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Mater. 12, 554–561 (2013).

    Article  CAS  Google Scholar 

  27. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

    Article  CAS  Google Scholar 

  28. Takenobu, T. et al. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nature Mater. 2, 683–688 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Gloter and C. Ewels for fruitful discussions. Y. Sato and T. Saito are gratefully acknowledged for their assistance for specimen preparations. This work was supported by the Japan Society for the Promotion of Science (JSAP) and JST Research Acceleration Program. A.V.K. and H-P.K. acknowledge support from the Academy of Finland through projects 263416 and COMP Centre of Excellence, respectively, and further thank CSC Finland for generous grants of computer time.

Author information

Authors and Affiliations

Authors

Contributions

R.S. and K.S. designed the experiments. R.S. prepared materials, performed microscopy and analysed data. H-P.K. and A.V.K. performed DFT calculations. K.H-T. and Z.L. contributed to sample preparation and reference material characterization. R.S., H-P.K., A.V.K. and K.S. co-wrote the paper.

Corresponding author

Correspondence to Kazu Suenaga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senga, R., Komsa, HP., Liu, Z. et al. Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes. Nature Mater 13, 1050–1054 (2014). https://doi.org/10.1038/nmat4069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4069

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing