Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Somatic microsatellite mutations as molecular tumor clocks

Abstract

Microsatellite (MS) mutations can potentially unravel the past of mutator phenotype tumors, with greater genetic diversity expected in older regions. Rapid clonal expansions of xenografts were characterized by relatively homogenous MS alleles, whereas greater diversity was observed in a colorectal cancer with the greatest variation in its adjacent adenoma. A subcutaneous lung cancer metastasis demonstrated diversity consistent with its one–month clinical duration and evidence of active mitosis during dormancy. The genetic legacy inherent to multistep tumorigenesis provides direct estimates of tumor ages, with up to thousands of cell divisions and high death rates necessary to yield the observed diversities. MS molecular tumor clocks have the unique potential to systematically reconstruct the early and occult evolution of individual human mutator phenotype tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nowell, P.C. The clonal evolution of tumor cell populations. Science 194, 23–29 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Welin, S., Youker, J. & Spratt, J.R., Jr. The rates and patterns of growth of 375 tumors of the large intestine and rectum observed serially by double contrast enema study (Malmo technique). Am. J. Roentgenol. 90, 673–687 (1963).

    CAS  Google Scholar 

  3. Zuckerkande, E. & Pauling, L. Evolutionary divergence and convergence in proteins, in Evolving Genes and Proteins. (eds. Bryson, V. & Vogel, HJ.) 97–106 (Academic Press, New York, 1965).

    Chapter  Google Scholar 

  4. Ionov, Y., Peinado, M.A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Aaltonen, L.A. et al. Clues to the pathogenesis of familial colorectal cancer. Science 260, 812–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Thibodeau, S.N., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 260, 816–819 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Loeb, L.A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51, 3075–3079 (1991).

    CAS  PubMed  Google Scholar 

  8. Shibata, D., Peinado, M.A. Ionov, Y., Malkhosyan, S. & Perucho, M. Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nature Genet. 6, 273–281 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Bhattacharyya, N.P., Skandalis, A., Ganesh, A., Groden, J. & Meuth, M. Mutator phenotypes of human colorectal carcinoma cell lines. Proc. Natl. Acad. Sci. USA 91, 6319–6323 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weber, J.L. & Wong, C. Mutation of human short tandem repeats. Hum. Mol. Genet. 2, 1123–1128 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Kimura, M. & Ohta, T. Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc. Natl. Acad. Sci. USA 75, 2868–2872 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Valdes, A.M., Slatkin, M. & Freimer, N.B. Allele frequencies at microsatellite loci: The Stepwise mutation model revisited. Genetics 133, 737–749 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bowcock, A.M. et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Di Rienzo, A. et al. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. USA 91, 3166–3170 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goldstein, D.B., Linares, A.R., Cavalli-Sforza, L.L. & Feldman, M.W. Genetic absolute dating based on microsatellites and the origin of modern humans. Proc. Natl. Acad. Sci. USA 92, 6723–6727 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goldstein, D.B., Linares, A.R., Cavalli-Sforza, L.L. & Feldman, M.W. An evaluation of genetic distances for use with microsatellite loci. Genetics 139, 463–471 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Steel, G.G. Cell loss as a factor in the growth rate of human tumors. Eur. J. Cancer 3, 381–387 (1967).

    Article  CAS  PubMed  Google Scholar 

  19. Steel, G.G. Growth Kinetics of Tumors. 185–216 (Clarendon, Oxford, 1977).

    Google Scholar 

  20. Wheelock, E.F., Weinhold, K.J. & Levich, J. The tumor dormant state. Adv. Cancer Res. 34, 107–140 (1981).

    Article  CAS  PubMed  Google Scholar 

  21. Holmgren, L., O'Reilly, M.S. & Folkman, J. Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med. 1, 149–153 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Fearon, E.R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–67 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Strauss, M., Lukas, J. & Bartek, J. Unrestricted cell cycling and cancer. Nature Med. 1, 1245–1246 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Papadopoulos, N. et al. Mutation of a mutL homolog in hereditary colon cancer. Science 263, 1625–1629 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Umar, A. et al. Defective mismatch repair in extracts of colorectal and endometrial cancer cell lines exhibiting microsatellite instability. J. Biol. Chem. 269, 14367–14370 (1994).

    CAS  PubMed  Google Scholar 

  26. Nyström-Lahti, M. et al. Founding mutations and Alu-mediated recombination in hereditary colon cancer. Nature Med. 1, 1203–1206 (1995).

    Article  PubMed  Google Scholar 

  27. Shibata, D. et al. Specific genetic analysis of microscopic tissue after selective ultraviolet radiation fractionation and the polymerase chain reaction. Am. J. Pathol. 141, 539–543 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hauge, X.Y. & Litt, M. A study of the origin of shadow bands seen when typing dinucleotide repeat polymorphisms by the PCR. Hum. Mol. Genet. 2, 411–415 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Manoukian, E.B. Modern Concepts and Theorems of Mathematical Statistics. 126 (Springer-Verlag, New York, 1986).

    Book  Google Scholar 

  30. Levinson, G. & Gutman, G.A. High frequency of short frameshifts in poly-CA/GT tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res. 15, 5322–5338 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibata, D., Navidi, W., Salovaara, R. et al. Somatic microsatellite mutations as molecular tumor clocks. Nat Med 2, 676–681 (1996). https://doi.org/10.1038/nm0696-676

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0696-676

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing