Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inflammasome-derived IL-1β production induces nitric oxide–mediated resistance to Leishmania

Abstract

Parasites of the Leishmania genus are the causative agents of leishmaniasis in humans, a disease that affects more than 12 million people worldwide. These parasites replicate intracellularly in macrophages, and the primary mechanisms underlying host resistance involve the production of nitric oxide (NO). In this study we show that the Nlrp3 inflammasome is activated in response to Leishmania infection and is important for the restriction of parasite replication both in macrophages and in vivo as demonstrated through the infection of inflammasome-deficient mice with Leishmania amazonensis, Leishmania braziliensis and Leishmania infantum chagasi. Inflammasome-driven interleukin-1β (IL-1β) production facilitated host resistance to infection, as signaling through IL-1 receptor (IL-1R) and MyD88 was necessary and sufficient to trigger inducible nitric oxide synthase (NOS2)-mediated production of NO. In this manuscript we identify a major signaling platform for host resistance to Leishmania spp. infection and describe the molecular mechanisms underlying Leishmania-induced NO production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Caspase-1 is activated in response to L. amazonensis infection.
Figure 2: The Nlrp3 inflammasome is required for caspase-1 activation in macrophages infected with L. amazonensis.
Figure 3: L. amazonensis multiplication is increased in macrophages from inflammasome-deficient mice.
Figure 4: The Nlrp3 inflammasome is important for the in vivo restriction of L. amazonensis infection.
Figure 5: IL-1β and IFN-γ contribute to inflammasome-dependent parasite elimination through NO-dependent mechanisms.
Figure 6: IL-1R signaling is important for the control of L. amazonensis infection in macrophages and in vivo.

Similar content being viewed by others

References

  1. Reithinger, R. et al. Cutaneous leishmaniasis. Lancet Infect. Dis. 7, 581–596 (2007).

    Article  PubMed  Google Scholar 

  2. Chappuis, F. et al. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat. Rev. Microbiol. 5, 873–882 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Bosque, F., Saravia, N.G., Valderrama, L. & Milon, G. Distinct innate and acquired immune responses to Leishmania in putative susceptible and resistant human populations endemically exposed to L. (Viannia) panamensis infection. Scand. J. Immunol. 51, 533–541 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, D. & Uzonna, J.E. The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response. Front. Cell Infect. Microbiol. 2, 83 (2012).

    PubMed  PubMed Central  Google Scholar 

  5. Mosser, D.M. & Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Green, S.J., Crawford, R.M., Hockmeyer, J.T., Meltzer, M.S. & Nacy, C.A. Leishmania major amastigotes initiate the l-arginine–dependent killing mechanism in IFN-(–stimulated macrophages by induction of tumor necrosis factor-α. J. Immunol. 145, 4290–4297 (1990).

    CAS  PubMed  Google Scholar 

  7. Green, S.J., Meltzer, M.S., Hibbs, J.B. Jr. & Nacy, C.A. Activated macrophages destroy intracellular Leishmania major amastigotes by an l-arginine–dependent killing mechanism. J. Immunol. 144, 278–283 (1990).

    CAS  PubMed  Google Scholar 

  8. Mukbel, R.M. et al. Macrophage killing of Leishmania amazonensis amastigotes requires both nitric oxide and superoxide. Am. J. Trop. Med. Hyg. 76, 669–675 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, G., Shaw, M.H., Kim, Y.G. & Nunez, G. NOD-like receptors: role in innate immunity and inflammatory disease. Annu. Rev. Pathol. 4, 365–398 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Wen, H., Ting, J.P. & O'Neill, L.A. A role for the NLRP3 inflammasome in metabolic diseases—did Warburg miss inflammation? Nat. Immunol. 13, 352–357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Franchi, L., Kanneganti, T.D., Dubyak, G.R. & Nunez, G. Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J. Biol. Chem. 282, 18810–18818 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Pétrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583–1589 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Sutterwala, F.S. et al. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 204, 3235–3245 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suzuki, T. et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 3, e111 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zamboni, D.S. et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat. Immunol. 7, 318–325 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Hamon, M.A. & Cossart, P. K+ efflux is required for histone H3 dephosphorylation by Listeria monocytogenes listeriolysin O and other pore-forming toxins. Infect. Immun. 79, 2839–2846 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lamkanfi, M. et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol. 187, 61–70 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Montaser, M., Lalmanach, G. & Mach, L. CA-074, but not its methyl ester CA-074Me, is a selective inhibitor of cathepsin B within living cells. Biol. Chem. 383, 1305–1308 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Liew, F.Y. et al. Resistance to Leishmania major infection correlates with the induction of nitric oxide synthase in murine macrophages. Eur. J. Immunol. 21, 3009–3014 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Stenger, S., Thuring, H., Rollinghoff, M. & Bogdan, C. Tissue expression of inducible nitric oxide synthase is closely associated with resistance to Leishmania major. J. Exp. Med. 180, 783–793 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Belkaid, Y. et al. A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. J. Immunol. 165, 969–977 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Andrade, Z.A., Reed, S.G., Roters, S.B. & Sadigursky, M. Immunopathology of experimental cutaneous leishmaniasis. Am. J. Pathol. 114, 137–148 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fernandez-Figueroa, E.A. et al. Disease severity in patients infected with Leishmania mexicana relates to IL-1β. PLoS Negl. Trop. Dis. 6, e1533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moravej, A. et al. IL-1β (–511T/C) gene polymorphism not IL-1β (+3953T/C) and LT-α (+252A/G) gene variants confers susceptibility to visceral leishmaniasis. Mol. Biol. Rep. 39, 6907–6914 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Ferreira, S.H., Lorenzetti, B.B., Bristow, A.F. & Poole, S. Interleukin-1 β as a potent hyperalgesic agent antagonized by a tripeptide analogue. Nature 334, 698–700 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Moncada, S., Palmer, R.M. & Higgs, E.A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142 (1991).

    CAS  PubMed  Google Scholar 

  32. Nathan, C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051–3064 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Werner-Felmayer, G. et al. Tetrahydrobiopterin-dependent formation of nitrite and nitrate in murine fibroblasts. J. Exp. Med. 172, 1599–1607 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Debus, A., Glasner, J., Rollinghoff, M. & Gessner, A. High levels of susceptibility and T helper 2 response in MyD88-deficient mice infected with Leishmania major are interleukin-4 dependent. Infect. Immun. 71, 7215–7218 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Muraille, E. et al. Genetically resistant mice lacking MyD88-adapter protein display a high susceptibility to Leishmania major infection associated with a polarized Th2 response. J. Immunol. 170, 4237–4241 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Gregory, D.J. & Olivier, M. Subversion of host cell signalling by the protozoan parasite Leishmania. Parasitology 130 (suppl.), S27–S35 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Shio, M.T. et al. Host cell signalling and Leishmania mechanisms of evasion. J. Trop. Med. 2012, 819512 (2012).

    Article  PubMed  Google Scholar 

  38. Soong, L. Modulation of dendritic cell function by Leishmania parasites. J. Immunol. 180, 4355–4360 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Xin, L., Li, K. & Soong, L. Down-regulation of dendritic cell signaling pathways by Leishmania amazonensis amastigotes. Mol. Immunol. 45, 3371–3382 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sacks, D. & Noben-Trauth, N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat. Rev. Immunol. 2, 845–858 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Satoskar, A.R. et al. Enhanced Th2-like responses in IL-1 type 1 receptor-deficient mice. Eur. J. Immunol. 28, 2066–2074 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Kostka, S.L., Knop, J., Konur, A., Udey, M.C. & von Stebut, E. Distinct roles for IL-1 receptor type I signaling in early versus established Leishmania major infections. J. Invest. Dermatol. 126, 1582–1589 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Kautz-Neu, K. et al. IL-1 signalling is dispensable for protective immunity in Leishmania-resistant mice. Exp. Dermatol. 20, 76–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267, 2000–2003 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Lara-Tejero, M. et al. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J. Exp. Med. 203, 1407–1412 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Späth, G.F. & Beverley, S.M. A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Exp. Parasitol. 99, 97–103 (2001).

    Article  PubMed  CAS  Google Scholar 

  47. Afonso, L.C. & Scott, P. Immune responses associated with susceptibility of C57BL/10 mice to Leishmania amazonensis. Infect. Immun. 61, 2952–2959 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Marim, F.M., Silveira, T.N., Lima, D.S. Jr. & Zamboni, D.S. A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells. PLoS ONE 5, e15263 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Darrah, P.A. et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 13, 843–850 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Green, L.C., Tannenbaum, S.R. & Goldman, P. Nitrate synthesis in the germfree and conventional rat. Science 212, 56–58 (1981).

    Article  CAS  PubMed  Google Scholar 

  51. Naviaux, R.K., Costanzi, E., Haas, M. & Verma, I.M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Nakamura for technical assistance, F. Cunha (Universidade de São Paulo, Brazil) for providing IL-1Ra and V. Dixit (Genentech, USA) for providing us with the Nlrp3−/− mice and the antibody to caspase-1 p20. This work was supported by grants from Instituto Nacional de Ciência e Tecnologia de Vacinas (INCTV/CNPq), Núcleo de Apoio à Pesquisa em Doenças Inflamatórias (NAPDIN, grant 11.1.21625.01.0), Fundação de Amparo ao Ensino, Pesquisa e Assistência do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FAEPA), Special Programme for Research and Training in Tropical Diseases/World Health Organization (TDR/WHO, grant A60999 to D.S.Z.) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grant 2006/52867-4 to D.S.Z.). D.L.C., V.C., L.D.C., A.L.N.S. and D.S.L.-J. (grant 2009/05054-6) are supported by fellowships from FAPESP. R.A.F. is an Investigator of the Howard Hughes Medical Institute. D.S.Z., M.B., M.T.B. and J.S.S. are Research Fellows from Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil.

Author information

Authors and Affiliations

Authors

Contributions

D.S.L.-J. designed and performed experiments, analyzed data, generated figures and wrote the manuscript. D.L.C., V.C., L.D.C. and A.L.N.S. designed and performed experiments and analyzed data. T.W.P.M., F.R.S.G. and M.T.B. helped with data interpretation, discussed the hypotheses and participated in manuscript preparation. M.B., K.R.B., R.A.F. and J.S.S. provided reagents and discussed the hypotheses. D.S.Z. supervised the project, designed the experiments, helped with data interpretation, participated in data analysis and wrote the manuscript.

Corresponding author

Correspondence to Dario S Zamboni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 700 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima-Junior, D., Costa, D., Carregaro, V. et al. Inflammasome-derived IL-1β production induces nitric oxide–mediated resistance to Leishmania. Nat Med 19, 909–915 (2013). https://doi.org/10.1038/nm.3221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing