Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets

Abstract

Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2–like 1 (BCL-XL), which has shown clinical efficacy in some BCL-2–dependent hematological cancers. However, concomitant on-target thrombocytopenia caused by BCL-XL inhibition limits the efficacy achievable with this agent. Here we report the re-engineering of navitoclax to create a highly potent, orally bioavailable and BCL-2–selective inhibitor, ABT-199. This compound inhibits the growth of BCL-2–dependent tumors in vivo and spares human platelets. A single dose of ABT-199 in three patients with refractory chronic lymphocytic leukemia resulted in tumor lysis within 24 h. These data indicate that selective pharmacological inhibition of BCL-2 shows promise for the treatment of BCL-2–dependent hematological cancers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discovery of ABT-199.
Figure 2: ABT-199 induces multiple hallmarks of apoptosis.
Figure 3: High BCL-2 expression predicts sensitivity to ABT-199 in NHL cell lines.
Figure 4: ABT-199 inhibits xenograft growth as a single agent or in combination with rituximab and bendamustine.
Figure 5: ABT-199 shows reduced effects on platelets compared to navitoclax.
Figure 6: Efficacy of ABT-199 treatment against CLL cells in vitro and in vivo.

References

  1. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Adams, J.M. & Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324–1337 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Youle, R.J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9, 47–59 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Tsujimoto, Y., Cossman, J., Jaffe, E. & Croce, C.M. Involvement of the bcl-2 gene in human follicular lymphoma. Science 228, 1440–1443 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Cleary, M.L., Smith, S.D. & Sklar, J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47, 19–28 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Boise, L.H. et al. Bcl-x, a bcl-2–related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Vaux, D.L., Cory, S. & Adams, J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Huang, J.Z. et al. The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood 99, 2285–2290 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Minn, A.J., Rudin, C.M., Boise, L.H. & Thompson, C.B. Expression of bcl-xl can confer a multidrug resistance phenotype. Blood 86, 1903–1910 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Amundson, S.A. et al. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res. 60, 6101–6110 (2000).

    CAS  PubMed  Google Scholar 

  11. Zhang, H. et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ. 14, 943–951 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Mason, K.D. et al. Programmed anuclear cell death delimits platelet life span. Cell 128, 1173–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Park, C.M. et al. Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins. J. Med. Chem. 51, 6902–6915 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Wilson, W.H. et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 11, 1149–1159 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roberts, A.W. et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J. Clin. Oncol. 30, 488–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Gandhi, L. et al. Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J. Clin. Oncol. 29, 909–916 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petros, A.M. et al. Solution structure of the antiapoptotic protein bcl-2. Proc. Natl. Acad. Sci. USA 98, 3012–3017 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muchmore, S.W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335–341 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Wendt, M.D. Discovery of ABT-263, a Bcl-family protein inhibitor: observations on targeting a large protein-protein interaction. Expert Opin. Drug. Discov. 3, 1123–1143 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Sattler, M. et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, E.F. et al. Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death Differ. 14, 1711–1713 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Atwell, S., Ultsch, M., De Vos, A.M. & Wells, J.A. Structural plasticity in a remodeled protein-protein interface. Science 278, 1125–1128 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Wendt, M.D. et al. Discovery and structure-activity relationship of antagonists of B-cell lymphoma 2 family proteins with chemopotentiation activity in vitro and in vivo. J. Med. Chem. 49, 1165–1181 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Bruncko, M. et al. Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. J. Med. Chem. 50, 641–662 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Harada, H., Quearry, B., Ruiz-Vela, A. & Korsmeyer, S.J. Survival factor–induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proc. Natl. Acad. Sci. USA 101, 15313–15317 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Del Gaizo Moore, V., Schlis, K.D., Sallan, S.E., Armstrong, S.A. & Letai, A. BCL-2 dependence and ABT-737 sensitivity in acute lymphoblastic leukemia. Blood 111, 2300–2309 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shoemaker, A.R. et al. Activity of the Bcl-2 family inhibitor ABT-263 in a panel of small cell lung cancer xenograft models. Clin. Cancer Res. 14, 3268–3277 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Singh, R.R. et al. Hedgehog signaling pathway is activated in diffuse large B-cell lymphoma and contributes to tumor cell survival and proliferation. Leukemia 24, 1025–1036 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Ackler, S. et al. Navitoclax (ABT-263) and bendamustine ± rituximab induce enhanced killing of non-Hodgkin's lymphoma tumors in vivo. Br. J. Pharmacol. 167, 881–891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marschitz, I. Analysis of Bcl-2 protein expression in chronic lymphocytic leukemia. Am. J. Clin. Pathol. 113, 219–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Samuel, S. et al. VSV oncolysis in combination with the BCL-2 inhibitor obatoclax overcomes apoptosis resistance in chronic lymphocytic leukemia. Mol. Ther. 18, 2094–2103 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rampello, E., Fricia, T. & Malaguarnera, M. The management of tumor lysis syndrome. Nat. Clin. Pract. Oncol. 3, 438–447 (2006).

    Article  PubMed  Google Scholar 

  35. American Cancer Society. Cancer Facts & Figures 2011. <http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-029771.pdf> (2011).

  36. Sawas, A., Diefenbach, C. & O'Connor, O.A. New therapeutic targets and drugs in non-Hodgkin's lymphoma. Curr. Opin. Hematol. 18, 280–287 (2011).

    CAS  PubMed  Google Scholar 

  37. Bea, S. et al. Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve gene-expression based survival prediction. Blood 106, 3183–3190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Iqbal, J. et al. BCL2 expression is a prognostic marker for the activated B-cell–like type of diffuse large B-cell lymphoma. J. Clin. Oncol. 24, 961–968 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Irish, J.M. et al. Flt3 Y591 duplication and Bcl-2 overexpression are detected in acute myeloid leukemia cells with high levels of phosphorylated wild-type p53. Blood 109, 2589–2596 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Coustan-Smith, E. et al. Clinical relevance of BCL-2 overexpression in childhood acute lymphoblastic leukemia. Blood 87, 1140–1146 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Campàs, C. et al. Bcl-2 inhibitors induce apoptosis in chronic lymphocytic leukemia cells. Exp. Hematol. 34, 1663–1669 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Cimmino, A. et al. MiR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 102, 13944–13949 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Calin, G.A. et al. MiR-15a and miR-16–1 cluster functions in human leukemia. Proc. Natl. Acad. Sci. USA 105, 5166–5171 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Matsumura, N. et al. mRNA display selection of a high-affinity, Bcl-X(L)-specific binding peptide. FASEB J. 24, 2201–2210 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Roberts, A.W. et al. Selective inhibition of BCL-2 is active against chronic lymphocytic leukemia (CLL): first clinical experience with the BH3-mimetic ABT-199. Abstract 546 (European Hematology Association 2012, Amsterdam, The Netherlands, June 14–17, 2012).

  46. La Thangue, N.B. & Kerr, D.J. Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat. Rev. Clin. Oncol. 8, 587–596 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, H., Nimmer, P., Rosenberg, S.H., Ng, S.C. & Joseph, M. Development of a high-throughput fluorescence polarization assay for Bcl-x(L). Anal. Biochem. 307, 70–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, J. et al. The Bcl-2/Bcl-X(L)/Bcl-w inhibitor, navitoclax, enhances the activity of chemotherapeutic agents in vitro and in vivo. Mol. Cancer Ther. 10, 2340–2349 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Phillips, D.C., Garrison, S.P., Jeffers, J.R. & Zambetti, G.P. Assays to measure p53-dependent and -independent apoptosis. Methods Mol. Biol. 559, 143–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Mason, K.D. et al. The BH3 mimetic compound, ABT-737, synergizes with a range of cytotoxic chemotherapy agents in chronic lymphocytic leukemia. Leukemia 23, 2034–2041 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Bruncko, E. Fry, L. Hasvold, L. Hexamer, A. Kunzer, A. Petros, X. Song, Z. Tao, L. Wang and X. Wang for contributions to the generation of ABT-199 and related analogs and J. Bouska, and D. Osterling for analytical support. The authors acknowledge G. Chiang and A. Vasudevan for critical reading of this manuscript, L. Belmont, I. Wertz, J. Adams, S. Cory, P. Colman, P. Czabotar and G. Lessene for useful discussions and K. Lowes, E. Litvinovich and L. Roberts for technical analysis. Research performed at the Walter and Eliza Hall Institute (WEHI) was supported by grants and fellowships from the Australian National Health and Medical Research Council (NHMRC, including an Independent Research Institutes Infrastructure Support Scheme (IRIISS) grant), the Australian Cancer Research Foundation, the Leukaemia Foundation of Australia, the Cancer Council of Victoria, the Victorian Cancer Agency, the Victorian State Government Operational Infrastructure Support and the Leukemia Lymphoma Society. The authors acknowledge L.M. Staudt (US National Institutes of Health) for DLBCL cell lines.

Author information

Authors and Affiliations

Authors

Contributions

A.J.S., S.W.E., S.H.R., S.G.H., W.J.F., D.C.S.H., J.D.L. and C.T. directed aspects of the preclinical research. A.J.S. and J.D.L. interpreted data and wrote the manuscript. A.W.R., S.H.E., J.F.S. and R.A.H. directed the clinical trial design, generated patient data and interpreted results, and A.W.R. contributed in writing the manuscript. S.L.K. generated in vitro CLL experiments. K.D.M. generated in vitro normal volunteer platelet data. M.J.M., E.R.B., S.L.A., D.S., H.L.M., J.L. and A.O. generated in vivo pharmacology data, and E.R.B. contributed in writing of the manuscript. M.D.W., C.-M.P., G.M.S., H.D. and A.J.S. conceived of or generated the compounds described in the manuscript. C.H.P. generated the X-ray structures. J.D.L., D.C.P., S.J., S.K.T., J.C., J.C.X., P.M.N., Y.X., H.Z., P.J.K., C.T., L.T.L. and M.L.S. performed the biological characterization of ABT-199 and other compounds described in the manuscript. N.D.C., B.D.D. and K.C.M. generated the pharmacokinetic and platelet data in conscious dogs.

Corresponding author

Correspondence to Andrew J Souers.

Ethics declarations

Competing interests

A.J.S., J.D.L., E.R.B., S.L.A., N.D.C., J.C., H.D., S.H.E., S.J., P.J.K., L.T.L., K.C.M., M.J.M., P.M.N., A.O., C.H.P., D.C.P., M.L.S., G.M.S., S.K.T., C.T., M.D.W., Y.X., J.C.X., H.Z., R.A.H., S.H.R. and S.W.E. are employees and stockholders of Abbott Laboratories. W.J.F., S.G.H., H.L.M. and D.S. are employees of Genentech, Inc., a member of the Roche group, and are stockholders of Roche Holding, AG. D.C.S.H., S.L.K., K.D.M. and A.W.R. are employees of Walter and Eliza Hall Institute, which receives commercial income and research funding from Genentech, Inc. and Abbott Laboratories.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–6 (PDF 318 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souers, A., Leverson, J., Boghaert, E. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19, 202–208 (2013). https://doi.org/10.1038/nm.3048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3048

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing