Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organ transplantation—how much of the promise has been realized?

Abstract

Since the introduction of organ transplantation into medical practice, progress and optimism have been abundant. Improvements in immunosuppressive drugs and ancillary care have led to outstanding short-term (1–3-year) patient and graft survival rates. This success is mitigated by several problems, including poor long-term (>5-year) graft survival rates, the need for continual immunosuppressive medication and the discrepancy between the demand for organs and the supply. Developing methods to induce transplant tolerance, as a means to improve graft outcomes and eliminate the requirement for immunosuppression, and expanding the pool of organs for transplantation are the major challenges of the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of graft rejection.
Figure 2: Selected strategies for tolerance induction now in clinical trials.

Similar content being viewed by others

References

  1. Medawar, P.B. The behavior and fate of skin autografts and skin homografts in rabbits. J. Anat. 78, 176 (1944).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Owen, R.D. Immunogenetic consequences of vascular anastomoses between bovine twins. Science 102, 400–401 (1945).

    Article  CAS  PubMed  Google Scholar 

  3. Billingham, R.E., Brent, L. & Medawar, P.B. Actively acquired tolerance of foreign cells. Nature 172, 603–606 (1953).

    Article  CAS  PubMed  Google Scholar 

  4. Murray, J.E., Merrill, J.P. & Harrison, J.H. Renal homotransplantation in identical twins. Surg. Forum 6, 432 (1955).

    Google Scholar 

  5. Port, F., Wolfe, R., Mauger, E., Berling, D. & Jiang, K. Comparison of Survival Probablities for Dialysis Pateints vs Cadeveric Renal Transplant Recipients. J. Am. Med. Assoc. 270, 1339–1343 (1993).

    Article  CAS  Google Scholar 

  6. Meier-Kriesche, H.U., Schold, J.D. & Kaplan, B. Long-term renal allograft survival: have we made significant progress or is it time to rethink our analytic and therapeutic strategies? Am. J. Transplant. 4, 1289–1295 (2004).

    Article  PubMed  Google Scholar 

  7. Suchin, E.J. et al. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J. Immunol. 166, 973–981 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Opelz, G. Correlation of HLA matching with kidney graft survival in patients with or without cyclosporine treatment. Transplantation 40, 240–243 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Cecka, J.M. The UNOS Renal Transplant Registry. in Clinical Transplants 2002 (ed. Cecka, J.M.a.T., P. I.) 1–20 (UCLA Immunogenetics Center, Los Angeles, 2002).

    Google Scholar 

  10. Goulmy, E., Gratama, J.W., Blokland, E., Zwaan, F.E. & van Rood, J.J. A minor transplantation antigen detected by MHC-restricted cytotoxic T lymphocytes during graft-versus-host disease. Nature 302, 156–161 (1983).

    Article  Google Scholar 

  11. Linsley, P.S., Clark, E.A. & Ledbetter, J.A. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc. Natl Acad. Sci. USA 87, 5031–5035 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Freeman, G.J. et al. Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science 262, 907–909 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Durie, F.H. et al. Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40. Science 261, 1328–1330 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Libby, P. & Pober, J.S. Chronic rejection. Immunity 14, 387–397 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Russell, P.S. et al. Tolerance, mixed chimerism, and chronic transplant arteriopathy. J. Immunol. 167, 5731–5740 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Kirk, A.D. et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat. Med. 5, 686–693 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Thomas, J.M. et al. Durable donor-specific T and B cell tolerance in rhesus macaques induced with peritransplantation anti-CD3 immunotoxin and deoxyspergualin: absence of chronic allograft nephropathy. Transplantation 69, 2497–2503 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Kawai, T. et al. Long-term outcome and alloantibody production in a non-myeloablative regimen for induction of renal allograft tolerance. Transplantation 68, 1767–1775 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Ildstad, S.T. & Sachs, D.H. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307, 168–170 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Sharabi, Y. & Sachs, D.H. Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparativew regimen. J. Exp. Med. 169, 493–502 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Kawai, T. et al. Mixed allogeneic chimerism and renal allograft tolerance in cynomolgus monkeys. Transplantation 59, 256–262 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Spitzer, T.R. et al. Combined histocompatibility leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation 68, 480–484 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Buhler, L.H. et al. Induction of kidney allograft tolerance after transient lymphohematopoietic chimerism in patients with multiple myeloma and end-stage renal disease. Transplantation 74, 1405–1409 (2002).

    Article  PubMed  Google Scholar 

  24. Wekerle, T. et al. Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nat. Med. 6, 464–469 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Durham, M.M. et al. Cutting edge: administration of anti-CD40 ligand and donor bone marrow leads to hemopoietic chimerism and donor-specific tolerance without cytoreductive conditioning. J. Immunol. 165, 1–4 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. June, C.H., Bluestone, J.A., Nadler, L.M. & Thompson, C.B. The B7 and CD28 receptor families. Immunol. Today 15, 321–331 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Linsley, P.S. et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174, 561–569 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Lin, H. et al. Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by CTLA4Ig plus donor-specific transfusion. J. Exp. Med. 178, 1801–1806 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Larsen, C.P. et al. CD40-gp39 interactions play a critical role during allograft rejection: suppression of allograft rejection by blockade of the CD40-gp39 pathway. Transplantation 61, 4–9 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Hancock, W.W. et al. Costimulatory function and expression of CD40-ligand, CD80, and CD86 in vascularized murine cardiac allograft rejection. Proc. Natl Acad. Sci. USA 93, 13967–13972 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kirk, A. et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc. Natl Acad. Sci. USA 94, 8789–8794 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levisetti, M. et al. Immunosuppressive effects of hCTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplantation. J. Immunol. 159, 5187–5191 (1997).

    CAS  PubMed  Google Scholar 

  33. Montgomery, S.P. et al. Combination induction therapy with monoclonal antibodies specific for CD80, CD86, and CD154 in nonhuman primate renal transplantation. Transplantation 74, 1365–1369 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Kirk, A.D. et al. Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H). Transplantation 76, 120–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Elzey, B.D. et al. Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity 19, 9–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Abrams, J.R. et al. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J. Clin. Invest. 103, 1243–1252 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kremer, J.M. et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N. Engl. J. Med. 349, 1907–1915 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Larsen, C.P. et al. Rational development of LEA29Y (belatacept), a high affinity variant of CTLA4Ig with potent immunosuppressive properties. Am. J. Transplant. 5, 443–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Rothstein, D.M. & Sayegh, M.H. T-cell costimulatory pathways in allograft rejection and tolerance. Immunol. Rev. 196, 85–108 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Pearson, T.C., Madsen, J.C., Larsen, C.P., Morris, P.J. & Wood, K.J. Induction of transplantation tolerance in adults using donor antigen and anti-CD4 monoclonal antibody. Transplantation 54, 475–483 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Qin, S. et al. “Infectious” transplantation tolerance. Science 259, 974–977 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Walunas, T.L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Freeman, G.J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ozkaynak, E. et al. Programmed death-1 targeting can promote allograft survival. J. Immunol. 169, 6546–6553 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Li, Y. et al. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nat. Med. 5, 1298–1302 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Dai, Z., Konieczny, B.T., Baddoura, F.K. & Lakkis, F.G. Impaired alloantigen-mediated T cell apoptosis and failure to induce long-term allograft survival in IL-2-deficient mice. J. Immunol. 161, 1659–1663 (1998).

    CAS  PubMed  Google Scholar 

  47. Larsen, C.P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Wells, A.D. et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat. Med. 5, 1303–1307 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Kurtz, J. et al. Mechanisms of early peripheral CD4 T-cell tolerance induction by anti-CD154 monoclonal antibody and allogeneic bone marrow transplantation: evidence for anergy and deletion but not regulatory cells. Blood 103, 4336–4343 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Benjamin, R.J. & Waldmann, H. Induction of tolerance by monoclonal antibody therapy. Nature 320, 449–451 (1986).

    Article  CAS  PubMed  Google Scholar 

  51. Waldmann, H. & Cobbold, S. Regulating the immune response to transplants. a role for CD4+ regulatory cells? Immunity 14, 399–406 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Moses, R.D., Sundeen, J.T., Orr, K.S., Roberts, R.R. & Gress, R.E. Cardiac allograft survival across major histocompatibility complex barriers in the rhesus monkey following T lymphocyte-depleted autologous marrow transplantation. III. Late allograft rejection. Transplantation 48, 769–773 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Holcombe, H., Mellman, I., Janeway, C.A., Jr, Bottomly, K. & Dittel, B.N. The immunosuppressive agent 15-deoxyspergualin functions by inhibiting cell cycle progression and cytokine production following naive T cell activation. J. Immunol. 169, 4982–4989 (2002).

    Article  PubMed  Google Scholar 

  54. Armstrong, N. et al. Analysis of primate renal allografts after T-cell depletion with anti-CD3–CRM9. Transplantation 66, 5–13 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Starzl, T.E. et al. Tolerogenic immunosuppression for organ transplantation. Lancet 361, 1502–1510 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Knechtle, S.J. et al. Campath-1H in renal transplantation: The University of Wisconsin experience. Surgery 136, 754–760 (2004).

    Article  PubMed  Google Scholar 

  57. Kirk, A.D. et al. Results from a human tolerance trial using CAMPATH-1H with and without infliximab. Am. J. Transplant. 2 Suppl 3, 379 (2002).

    Google Scholar 

  58. Pearl, J.P. et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am. J. Transplant. 5, 465–474 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Sykes, M. Mixed chimerism and transplant tolerance. Immunity 14, 417–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Tang, Q. et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med. 199, 1455–1465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Munn, D.H. et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297, 1867–1870 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Munn, D.H., Sharma, M.D. & Mellor, A.L. Ligation of B7–1/B7–2 by human CD4(+) T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol. 172, 4100–4110 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Mirenda, V. et al. Modified dendritic cells coexpressing self and allogeneic major histocompatability complex molecules: an efficient way to induce indirect pathway regulation. J. Am. Soc. Nephrol. 15, 987–997 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Zheng, X.X. et al. Favorably tipping the balance between cytopathic and regulatory T cells to create transplantation tolerance. Immunity 19, 503–514 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Heeger, P.S. et al. Pretransplant frequency of donor-specific, IFN-gamma-producing lymphocytes is a manifestation of immunologic memory and correlates with the risk of posttransplant rejection episodes. J. Immunol. 163, 2267–2275 (1999).

    CAS  PubMed  Google Scholar 

  66. Padovan, E. et al. Expression of two T cell receptor alpha chains: dual receptor T cells. Science 262, 422–424 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Lombardi, G. et al. Are primary alloresponses truly primary? Int. Immunol. 2, 9–13 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. Murali-Krishna, K. & Ahmed, R. Cutting edge: naive T cells masquerading as memory cells. J. Immunol. 165, 1733–1737 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Gudmundsdottir, H. & Turka, L.A. A closer look at homeostatic proliferation of CD4(+) T cells: costimulatory requirements and role in memory formation. J. Immunol. 167, 3699–3707 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Ge, Q., Hu, H., Eisen, H.N. & Chen, J. Different contributions of thymopoiesis and homeostasis-driven proliferation to the reconstitution of naive and memory T cell compartments. Proc. Natl Acad. Sci. USA 99, 2989–2994 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fan, X. et al. Donor-specific B-cell tolerance after ABO-incompatible infant heart transplantation. Nat. Med. 10, 1227–1233 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Gloor, J.M. et al. Overcoming a positive crossmatch in living-donor kidney transplantation. Am. J. Transplant. 3, 1017–1023 (2003).

    Article  PubMed  Google Scholar 

  73. Yang, Y.G. et al. Tolerization of anti-Galalpha1–3Gal natural antibody-forming B cells by induction of mixed chimerism. J. Exp. Med. 187, 1335–1342 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ohdan, H., Swenson, K.G., Kitamura, H., Yang, Y.G. & Sykes, M. Tolerization of Gal alpha 1,3Gal-reactive B cells in pre-sensitized alpha 1,3-galactosyltransferase-deficient mice by nonmyeloablative induction of mixed chimerism. Xenotransplantation 8, 227–238 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Tryphonopoulos, P. et al. The role of donor bone marrow infusions in withdrawal of immunosuppression in adult liver allotransplantation. Am. J. Transplant. 5, 608–613 (2005).

    Article  PubMed  Google Scholar 

  76. Oike, F. et al. Complete withdrawal of immunosuppression in living donor liver transplantation. Transplant. Proc. 34, 1521 (2002).

    Article  PubMed  Google Scholar 

  77. Harper, A.M., Taranto, S.E. & Edwards, E.B. The OPTN waiting list, 1988–2001. Clin. Transpl., 79–92 (2002).

  78. Cascalho, M. & Platt, J.L. The immunological barrier to xenotransplantation. Immunity 14, 437–446 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. McCurry, K.R. et al. Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nat. Med. 1, 423–427 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Kolber-Simonds, D. et al. Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc. Natl Acad. Sci. USA 101, 7335–7340 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lai, L. et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295, 1089–1092 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Phelps, C.J. et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299, 411–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Yamada, K. et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat. Med. 11, 32–34 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Kuwaki, K. et al. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat. Med. 11, 29–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Patience, C., Takeuchi, Y. & Weiss, R.A. Infection of human cells by an endogenous retrovirus of pigs. Nat. Med. 3, 282–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Paradis, K. et al. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group. Science 285, 1236–1241 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Scobie, L. et al. Absence of replication-competent human-tropic porcine endogenous retroviruses in the germ line DNA of inbred miniature Swine. J. Virol. 78, 2502–2509 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wobus, A.M. & Boheler, K.R. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol. Rev. 85, 635–678 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Freed, C.R. et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N. Engl. J. Med. 344, 710–719 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Sarwal, M. et al. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N. Engl. J. Med. 349, 125–138 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank their colleagues for many helpful discussions and regret that space constraints prevented them from citing a number of excellent papers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence A Turka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lechler, R., Sykes, M., Thomson, A. et al. Organ transplantation—how much of the promise has been realized?. Nat Med 11, 605–613 (2005). https://doi.org/10.1038/nm1251

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing