Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heart transplantation: advances in expanding the donor pool and xenotransplantation

Abstract

Approximately 65 million adults globally have heart failure, and the prevalence is expected to increase substantially with ageing populations. Despite advances in pharmacological and device therapy of heart failure, long-term morbidity and mortality remain high. Many patients progress to advanced heart failure and develop persistently severe symptoms. Heart transplantation remains the gold-standard therapy to improve the quality of life, functional status and survival of these patients. However, there is a large imbalance between the supply of organs and the demand for heart transplants. Therefore, expanding the donor pool is essential to reduce mortality while on the waiting list and improve clinical outcomes in this patient population. A shift has occurred to consider the use of organs from donors with hepatitis C virus, HIV or SARS-CoV-2 infection. Other advances in this field have also expanded the donor pool, including opt-out donation policies, organ donation after circulatory death and xenotransplantation. We provide a comprehensive overview of these various novel strategies, provide objective data on their safety and efficacy, and discuss some of the unresolved issues and controversies of each approach.

Key points

  • Heart transplantation is a crucial therapy for patients with advanced heart failure, but the availability of organs is limited, necessitating strategies to expand the pool of organ donors.

  • Interest is growing in heart transplantation from donors with hepatitis C virus (HCV) viraemia to recipients negative for HCV, with the initial experience of these transplantations producing excellent outcomes, and from donors positive for HIV to recipients positive for HIV.

  • Multiple case series of heart transplantation from donors with positive nucleic acid testing for SARS-CoV-2 infection have reported no significant difference in outcomes compared with heart transplantation from donors without SARS-CoV-2, although a trend towards increased early mortality in recipients from donors with active SARS-CoV-2 infection was reported in one study.

  • An opt-out organ donation policy, in which individuals are presumed to be willing deceased organ donors unless they opt out, is a governmental strategy adopted by various countries to increase the donor pool.

  • Donation after circulatory (rather than brain) death, with either direct procurement and perfusion or normothermic regional perfusion, could initiate the largest expansion in heart transplantation in recent years.

  • Heart xenotransplantation is still largely in the investigational phase but the experience of heart transplantation from gene-edited pigs into humans is promising.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SARS-CoV-2-positive organ donation protocol.
Fig. 2: National consent policies for organ donation.
Fig. 3: Protocol for heart donation after circulatory death.
Fig. 4: The 10-GE pig.

Similar content being viewed by others

References

  1. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).

    Article  Google Scholar 

  2. Virani, S. S. et al. Heart disease and stroke statistics — 2021 update: a report from the American Heart Association. Circulation 143, e254–e743 (2021).

    Article  PubMed  Google Scholar 

  3. Heidenreich, P. A. et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ. Heart Fail. 6, 606–619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fang, J. C. et al. Advanced (stage D) heart failure: a statement from the Heart Failure Society of America Guidelines Committee. J. Card. Fail. 21, 519–534 (2015).

    Article  PubMed  Google Scholar 

  5. Fang, N., Jiang, M. & Fan, Y. Ideal cardiovascular health metrics and risk of cardiovascular disease or mortality: a meta-analysis. Int. J. Cardiol. 214, 279–283 (2016).

    Article  PubMed  Google Scholar 

  6. Crespo-leiro, M. G. et al. Advanced heart failure: a position statement of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 20, 1505–1535 (2018).

    Article  PubMed  Google Scholar 

  7. Heidenreich, P. et al. 2022 AHA/ACC/HFSA Guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 145, e895–e1032 (2022).

    PubMed  Google Scholar 

  8. Kalogeropoulos, A. P. et al. Progression to stage D heart failure among outpatients with stage C heart failure and reduced ejection fraction. JACC Heart Fail. 5, 528–537 (2017).

    Article  PubMed  Google Scholar 

  9. Colvin, M. et al. OPTN/SRTR 2020 annual data report: heart. Am. J. Transplant. 22, 350–437 (2022).

    Article  PubMed  Google Scholar 

  10. Khush, K. K. et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-eighth adult heart transplantation report — 2021; focus on recipient characteristics. J. Heart Lung Transplant. 40, 1035–1049 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Khush, K. K. et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-sixth adult heart transplantation report — 2019; focus theme: donor and recipient size match. J. Heart Lung Transplant. 38, 1056–1066 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. NHS Blood and Transplant. How Long is the Wait for a Heart? https://www.nhsbt.nhs.uk/organ-transplantation/heart/receiving-a-heart/how-long-is-the-wait-for-a-heart (2022).

  13. Truby, L. & Rogers, J. Advanced heart failure: epidemiology, diagnosis, and therapeutic approaches. JACC Heart Fail. 8, 523–536 (2020).

    Article  PubMed  Google Scholar 

  14. US Department of Health and Human Services. Organ Procurement and Transplantation Network https://optn.transplant.hrsa.gov/data/view-data-reports/national-data (2022).

  15. Roest, S. et al. Waiting list mortality and the potential of donation after circulatory death heart transplantations in the Netherlands. Neth. Heart J. 29, 88–97 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Sun, Y. F. et al. Current status of and opinions on heart transplantation in China. Curr. Med. Sci. 41, 841–846 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bakhtiyar, S. S. et al. Survival on the heart transplant waiting list. JAMA Cardiol. 5, 1227–1235 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kittleson, M. M. & Kobashigawa, J. A. Cardiac transplantation: current outcomes and contemporary controversies. JACC Heart Fail. 5, 857–868 (2017).

    Article  PubMed  Google Scholar 

  19. Tong, C. K. W. & Khush, K. K. New approaches to donor selection and preparation in heart transplantation. Curr. Treat. Options Cardiovasc. Med. 23, 28 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sathianathan, S. & Bhat, G. Heart transplant donor selection guidelines: review and recommendations. Curr. Cardiol. Rep. 24, 119–130 (2022).

    Article  PubMed  Google Scholar 

  21. DeFilippis, E. M. et al. Evolving characteristics of heart transplantation donors and recipients: JACC focus seminar. J. Am. Coll. Cardiol. 79, 1108–1123 (2022).

    Article  PubMed  Google Scholar 

  22. Haji, S. A. et al. Donor hepatitis-C seropositivity is an independent risk factor for the development of accelerated coronary vasculopathy and predicts outcome after cardiac transplantation. J. Heart Lung Transplant. 23, 277–283 (2004).

    Article  PubMed  Google Scholar 

  23. Gasink, L. B. et al. Hepatitis C virus seropositivity in organ donors and survival in heart transplant recipients. J. Am. Med. Assoc. 296, 1843–1850 (2006).

    Article  CAS  Google Scholar 

  24. British Viral Hepatitis Group. UK Position Statement on the Use of Organs from Hepatitis C Viraemic Donors and Increased Infectious Risk Donors in Hepatitis C https://go.nature.com/46Mb1LM (2021).

  25. Levitsky, J. et al. The American Society of Transplantation consensus conference on the use of hepatitis C viremic donors in solid organ transplantation. Am. J. Transplant. 17, 2790–2802 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Mehra, M. et al. The drug-intoxication epidemic and solid-organ transplantation. N. Engl. J. Med. 378, 1943–1945 (2018).

    Article  PubMed  Google Scholar 

  27. Durand, C. et al. The drug overdose epidemic and deceased-donor transplantation in the United States. Ann. Intern. Med. 168, 702–711 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huckaby, L. V. et al. Center-level utilization of hepatitis C virus-positive donors for orthotopic heart transplantation. Transplantation 105, 2639–2645 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aslam, S. et al. Utilization of hepatitis C virus-infected organ donors in cardiothoracic transplantation: an ISHLT expert consensus statement. J. Heart Lung Transplant. 39, 418–432 (2020).

    Article  PubMed  Google Scholar 

  30. Bruno, S. et al. Heart transplantation from hepatitis C-positive donors in the era of direct acting antiviral therapy: a comprehensive literature review. Transplant. Direct 5, e486 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aslam, S., Yumul, I., Mariski, M., Pretorius, V. & Adler, E. Outcomes of heart transplantation from hepatitis C virus–positive donors. J. Heart Lung Transplant. 38, 1259–1267 (2019).

    Article  PubMed  Google Scholar 

  32. Schlendorf, K. H. et al. Expanding heart transplant in the era of direct-acting antiviral therapy for hepatitis C. JAMA Cardiol. 5, 167–174 (2020).

    Article  PubMed  Google Scholar 

  33. Lewis, T. C. et al. Management and tolerability of glecaprevir-pibrentasvir pharmacotherapy in hepatitis C viremic heart and lung transplant recipients. Clin. Transplant. 34, e14030 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Moayedi, Y. et al. Current use of hearts from hepatitis C viremic donors. Circ. Heart Fail. 11, e005276 (2018).

    Article  PubMed  Google Scholar 

  35. Gernhofer, Y. K. et al. The impact of using hepatitis c virus nucleic acid test–positive donor hearts on heart transplant waitlist time and transplant rate. J. Heart Lung Transplant. 38, 1178–1188 (2019).

    Article  PubMed  Google Scholar 

  36. Reyentovich, A. et al. Outcomes of the treatment with glecaprevir/pibrentasvir following heart transplantation utilizing hepatitis C viremic donors. Clin. Transplant. 34, e13989 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Smith, D. E. et al. Impact of early initiation of direct-acting antiviral therapy in thoracic organ transplantation from hepatitis C virus positive donors. Semin. Thorac. Cardiovasc. Surg. 33, 407–415 (2021).

    Article  PubMed  Google Scholar 

  38. Stachel, M. W. et al. Long-term follow-up of acute and chronic rejection in heart transplant recipients from hepatitis C viremic (NAT+) donors. Am. J. Transplant. 22, 2951–2960 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Villegas-Galaviz, J., Anderson, E. & Guglin, M. Clinical outcomes of heart transplantation using hepatitis C-viremic donors: a systematic review with meta-analysis. J. Heart Lung Transplant. 41, 538–549 (2022).

    Article  PubMed  Google Scholar 

  40. Kilic, A. et al. Outcomes of adult heart transplantation using hepatitis C-positive donors. J. Am. Heart Assoc. 9, e014495 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gidea, C. G. et al. Increased early acute cellular rejection events in hepatitis C-positive heart transplantation. J. Heart Lung Transplant. 39, 1199–1207 (2020).

    Article  PubMed  Google Scholar 

  42. Stewart, Z. A. et al. Clinical and financial implications of 2 treatment strategies for donor-derived hepatitis C infections. Transplant. Direct 7, e762 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Woolley, A. E. et al. The cost-effectiveness of transplanting hearts from hepatitis C-infected donors into uninfected recipients. Transplantation 107, 961–969 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Rochlani, Y., Diab, K. & Jorde, U. P. Hepatitis C-positive donors in cardiac transplantation: problems and opportunities. Curr. Heart Fail. Rep. 17, 106–115 (2020).

    Article  PubMed  Google Scholar 

  45. Siddiqi, H. K. & Schlendorf, K. H. Hepatitis C positive organ donation in heart transplantation. Curr. Transplant. Rep. 8, 359–367 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ingelfinger, J. R. & Rubin, E. J. The HIV-positive transplant donor — change born of necessity. N. Engl. J. Med. 372, 663–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Muller, E., Barday, Z., Mendelson, M. & Kahn, D. HIV-positive-to-HIV-positive kidney transplantation —results at 3 to 5 years. N. Engl. J. Med. 372, 613–620 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Woods, C. et al. Efficacy of hope: analysis of organ quality and availability among deceased HIV-positive donors. Transpl. Infect. Dis. 24, e13916 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mehta, S. & Locke, J. E. Human immunodeficiency virus from life taking to life giving: expanding the donor pool by using HIV-positive donors. Curr. Opin. Organ Transplant. 25, 626–630 (2020).

    Article  PubMed  Google Scholar 

  50. Uriel, N. et al. Heart transplantation in human immunodeficiency virus-positive patients. J. Heart Lung Transplant. 28, 667–669 (2009).

    Article  PubMed  Google Scholar 

  51. Doberne, J. W. et al. Heart transplantation survival outcomes of HIV positive and negative recipients. Ann. Thorac. Surg. 111, 1465–1471 (2021).

    Article  PubMed  Google Scholar 

  52. Organ Procurement and Transplantation Network. HOPE Act https://optn.transplant.hrsa.gov/learn/professional-education/hope-act (2022).

  53. Bonny, T. et al. Outcomes of donor-derived superinfection screening in HIV-positive to HIV-positive kidney and liver transplantation a multicentre, prospective, observational study. Lancet HIV 7, e611–e619 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Montefiore. World’s First HIV-Positive to HIV-Positive Heart Transplant Performed at Montefiore Health System https://www.montefiore.org/body.cfm?id=1738&action=detail&ref=2194 (2022).

  55. ABC7 NY. Recipient in 1st HIV-positive Heart Transplant Meets Donor’s Family After Groundbreaking Surgery https://abc7ny.com/hiv-positive-heart-transplant-montefiore-donor-recipient/12481563/ (2022).

  56. Madan, S. et al. Outcomes of heart transplantation in patients with human immunodeficiency virus. Am. J. Transplant. 19, 1529–1535 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Ison, M. G. et al. Transmission of human immunodeficiency virus and hepatitis C virus from an organ donor to four transplant recipients. Am. J. Transplant. 11, 1218–1225 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Simonds, R. J. HIV transmission by organ and tissue transplantation. AIDS 7S35, S35–S38 (1993).

    Article  Google Scholar 

  59. Aslam, S. et al. Guidance from the International Society of Heart and Lung Transplantation Regarding the SARS CoV-2 Pandemic. ISHLT https://ishlt.org/ishlt/media/documents/SARS-CoV-2_-Guidance-for-Cardiothoracic-Transplant-and-VAD-centers.pdf (2020).

  60. Eichenberger, E. M. et al. Transplanting thoracic COVID-19 positive donors: an institutional protocol and report of the first 14 cases. J. Heart Lung Transplant. 41, 1376–1381 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bock, M. J. et al. Organ transplantation using COVID-19-positive deceased donors. Am. J. Transplant. 22, 2203–2216 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Neidlinger, N. A. et al. Organ recovery from deceased donors with prior COVID-19: a case series. Transpl. Infect. Dis. 23, e13503 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Schold, J. D., Koval, C. E., Wee, A., Eltemamy, M. & Poggio, E. D. Utilization and outcomes of deceased donor SARS-CoV-2-positive organs for solid organ transplantation in the United States. Am. J. Transplant. 22, 2217–2227 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martinez-Reviejo, R. et al. Solid organ transplantation from donors with recent or current SARS-CoV-2 infection: a systematic review. Anaesth. Crit. Care Pain. Med. 41, 101098 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ushiro-Lumb, I. et al. Transplantation of organs from SARS-CoV-2 RNA positive deceased donors: the UK experience so far. Transplantation 106, e418–e419 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Madgula, A. S. et al. Tackling the paradox of orthotropic heart transplantation from SARS-CoV-2 positive donors: a single center experience. J. Heart Lung Transplant. 41, 1650–1653 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dhand, A., Okumura, K., Nabors, C. & Nishida, S. Solid organ transplantation from COVID positive donors in the United States: analysis of United Network for organ sharing database. Transpl. Infect. Dis. 25, e13925 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Madan, S. et al. Early outcomes of adult heart transplantation from COVID-19 infected donors. J. Am. Coll. Cardiol. https://doi.org/10.1016/j.jacc.2023.04.022 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Etheredge, H. R. Assessing global organ donation policies: opt-in vs opt-out. Risk Manag. Healthc. Policy 14, 1985–1998 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kaushik, J. Organ transplant and presumed consent: towards an ‘opting out’ system. Indian J. Med. Ethics 6, 149–152 (2009).

    PubMed  Google Scholar 

  71. Shepherd, L., O’Carroll, R. E. & Ferguson, E. An international comparison of deceased and living organ donation/transplant rates in opt-in and opt-out systems: a panel study. BMC Med. 12, 131 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wu, Y. et al. Cadaveric organ donation in China: a crossroads for ethics and sociocultural factors. Medicine 97, e9951 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Arshad, A., Anderson, B. & Sharif, A. Comparison of organ donation and transplantation rates between opt-out and opt-in systems. Kidney Int. 95, 1453–1460 (2019).

    Article  PubMed  Google Scholar 

  74. Golsteyn, B. H. H. & Verhagen, A. M. C. Deceased by default: consent systems and organ-patient mortality. PLoS ONE 16, e0247719 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jansen, N. E., Williment, C., Haase-Kromwijk, B. J. J. M. & Gardiner, D. Changing to an opt out system for organ donation-reflections from England and Netherlands. Transpl. Int. 35, 10466 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Watson, M. B. Presumed consent for organ transplantation: a better system. Curr. Surg. 60, 156–157 (2003).

    Article  PubMed  Google Scholar 

  77. Davidai, S., Gilovich, T. & Ross, L. D. The meaning of default options for potential organ donors. Proc. Natl Acad. Sci. USA 109, 15201–15205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ahmad, M. U. et al. A systematic review of opt-out versus opt-in consent on deceased organ donation and transplantation (2006-2016). World J. Surg. 43, 3161–3171 (2019).

    Article  PubMed  Google Scholar 

  79. Rithalia, A. et al. A systematic review of presumed consent systems for deceased organ donation. Health Technol. Assess. 13, 1–95 (2009).

    Article  Google Scholar 

  80. Appadurai, A. Presumed consent to organ donation: 10 years’ experience in Belgium. J. R. Soc. Med. 89, 663–666 (1996).

    Article  Google Scholar 

  81. Domínguez, J. & Rojas, J. L. Presumed consent legislation failed to improve organ donation in Chile. Transplant. Proc. 45, 1316–1317 (2013).

    Article  PubMed  Google Scholar 

  82. Ezaz, G. & Lai, M. How the ‘opt-in’ option optimizes organ donation rates. Dig. Dis. Sci. 64, 1067–1069 (2019).

    Article  PubMed  Google Scholar 

  83. Matesanz, R. & Domínguez-Gil, B. Opt-out legislations: the mysterious viability of the false. Kidney Int. 95, 1301–1303 (2019).

    Article  PubMed  Google Scholar 

  84. Fabre, J., Murphy, P. & Matesanz, R. Presumed consent: a distraction in the quest for increasing rates of organ donation. BMJ 341, c4973 (2010).

    Article  PubMed  Google Scholar 

  85. Glazier, A. & Mone, T. Success of opt-in organ donation policy in the United States. J. Am. Med. Assoc. 322, 719–720 (2019).

    Article  Google Scholar 

  86. Zúñiga-Fajuri, A. Increasing organ donation by presumed consent and allocation priority: Chile. Bull. World Health Organ. 93, 199–202 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cronin, A. J. Points mean prizes: priority points, preferential status and directed organ donation in Israel. Isr. J. Health Policy Res. 3, 8 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kootstra, G., Daemen, J. & Oomen, A. P. Categories of non-heart-beating donors. Transpl. Proc. 27, 2893–2894 (1995).

    CAS  Google Scholar 

  89. Thuong, M. et al. New classification of donation after circulatory death donors definitions and terminology. Transpl. Int. 29, 749–759 (2016).

    Article  PubMed  Google Scholar 

  90. Reich, D. J. et al. ASTS recommended practice guidelines for controlled donation after cardiac death organ procurement and transplantation. Am. J. Transplant. 9, 2004–2011 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Scheuer, S. E., Jansz, P. C. & Macdonald, P. S. Heart transplantation following donation after circulatory death: expanding the donor pool. J. Heart Lung Transplant. 40, 882–889 (2021).

    Article  PubMed  Google Scholar 

  92. Page, A., Messer, S. & Large, S. R. Heart transplantation from donation after circulatory determined death. Ann. Cardiothorac. Surg. 7, 75–81 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Niederberger, P. et al. Heart transplantation with donation after circulatory death. Circ. Heart Fail. 12, e005517 (2019).

    Article  PubMed  Google Scholar 

  94. Truby, L. K. et al. Donation after circulatory death in heart transplantation: history, outcomes, clinical challenges, and opportunities to expand the donor pool. J. Card. Fail. 28, 1456–1463 (2022).

    Article  PubMed  Google Scholar 

  95. Ardehali, A. et al. Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): a prospective, open-label, multicentre, randomised non-inferiority trial. Lancet 385, 2577–2584 (2015).

    Article  PubMed  Google Scholar 

  96. Schroder, J. et al. Successful utilization of extended criteria donor (ECD) hearts for transplantation — results of the OCSTM heart EXPAND trial to evaluate the effectiveness and safety of the OCS heart system to preserve and assess ECD hearts for transplantation. J. Heart Lung Transplant. 38, S42 (2019).

    Article  Google Scholar 

  97. Dhital, K. K. et al. Adult heart transplantation with distant procurement and ex-vivo preservation of donor hearts after circulatory death: a case series. Lancet 385, 2585–2591 (2015).

    Article  PubMed  Google Scholar 

  98. Messer, S. J. et al. Functional assessment and transplantation of the donor heart after circulatory death. J. Heart Lung Transplant. 35, 1443–1452 (2016).

    Article  PubMed  Google Scholar 

  99. Messer, S. et al. Outcome after heart transplantation from donation after circulatory-determined death donors. J. Heart Lung Transplant. 36, 1311–1318 (2017).

    Article  PubMed  Google Scholar 

  100. Chew, H. et al. Outcomes of donation after circulatory death heart transplantation in Australia. J. Am. Coll. Cardiol. 73, 1447–1459 (2019).

    Article  PubMed  Google Scholar 

  101. Dhital, K., Ludhani, P., Scheuer, S., Connellan, M. & Macdonald, P. DCD donations and outcomes of heart transplantation: the Australian experience. Indian J. Thorac. Cardiovasc. Surg. 36, 224–232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Iyer, A. & Dhital, K. Cardiac donation after circulatory death. Curr. Opin. Organ Transplant. 25, 241–247 (2020).

    Article  PubMed  Google Scholar 

  103. Messer, S. et al. A 5-year single-center early experience of heart transplantation from donation after circulatory-determined death donors. J. Heart Lung Transplant. 39, 1463–1475 (2020).

    Article  PubMed  Google Scholar 

  104. Abbasi, J. “Donation after circulatory death” heart transplant is a US first. J. Am. Med. Assoc. 323, 111 (2020).

    Google Scholar 

  105. Hoffman, J. R. H. et al. Early US experience with cardiac donation after circulatory death (DCD) using normothermic regional perfusion. J. Heart Lung Transplant. 40, 1408–1418 (2021).

    Article  PubMed  Google Scholar 

  106. Jawitz, O. K., Bryner, B. S., Schroder, J. N. & DeVore, A. D. Donation after circulatory death heart transplantation in the United States: an early report of donor characteristics. JTCVS Tech. 12, 104–107 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Suarez-Pierre, A. et al. Appraisal of donation after circulatory death: how far could we expand the heart donor pool? Ann. Thorac. Surg. 114, 676–682 (2022).

    Article  PubMed  Google Scholar 

  108. Madan, S. et al. Feasibility and potential impact of heart transplantation from adult donors after circulatory death. J. Am. Coll. Cardiol. 79, 148–162 (2022).

    Article  PubMed  Google Scholar 

  109. Smith, D. E. et al. Early experience with donation after circulatory death heart transplantation using normothermic regional perfusion in the United States. J. Thorac. Cardiovasc. Surg. 164, 557–568.e1 (2022).

    Article  PubMed  Google Scholar 

  110. Louca, J. et al. The international experience of in-situ recovery of the DCD heart: a multicentre retrospective observational study. eClinicalMedicine 58, 101887 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  111. D’Alessandro, D. A. et al. Hemodynamic and clinical performance of hearts donated after circulatory death. J. Am. Coll. Cardiol. 80, 1314–1326 (2022).

    Article  PubMed  Google Scholar 

  112. Schroder, J. et al. Expanding heart transplants from donors after circulatory death (DCD) — results of the first randomized controlled trial using the Organ Care System (OCSTM) heart — (OCS DCD heart trial). J. Heart Lung Transplant. 41, S72 (2022).

    Article  Google Scholar 

  113. Farr, M. et al. Potential for donation after circulatory death heart transplantation in the United States: retrospective analysis of a limited UNOS dataset. Am. J. Transplant. 20, 525–529 (2020).

    Article  PubMed  Google Scholar 

  114. Pagani, F. D. Heart transplantation using organs from donors following circulatory death: the journey continues. J. Am. Coll. Cardiol. 79, 163–165 (2022).

    Article  PubMed  Google Scholar 

  115. Parent, B. et al. Ethical and logistical concerns for establishing NRP-cDCD heart transplantation in the United States. Am. J. Transplant. 20, 1508–1512 (2020).

    Article  PubMed  Google Scholar 

  116. Rajab, T. K. & Singh, S. K. Donation after cardiac death heart transplantation in America is clinically necessary and ethically justified. Circ. Heart Fail. 11, e004884 (2018).

    Article  PubMed  Google Scholar 

  117. Ave, A. L. D., Sulmasy, D. P. & Bernat, J. L. The ethical obligation of the dead donor rule. Med. Health Care Philos. 23, 43–50 (2020).

    Article  Google Scholar 

  118. American College of Physicians. Ethics, Determination of Death, and Organ Transplantation in Normothermic Regional Perfusion (NRP) with Controlled Donation After Circulatory Determination of Death (cDCD): American College of Physicians Statement of Concern https://www.acponline.org/acp_policy/policies/ethics_determination_of_death_and_organ_transplantation_in_nrp_2021.pdf (2021).

  119. Vanholder, R. et al. Organ donation and transplantation: a multi-stakeholder call to action. Nat. Rev. Nephrol. 17, 554–568 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Parent, B., Caplan, A., Moazami, N. & Montgomery, R. A. Response to American College of Physician’s statement on the ethics of transplant after normothermic regional perfusion. Am. J. Transplant. 22, 1307–1310 (2022).

    Article  PubMed  Google Scholar 

  121. Smith, D. & Moazami, N. Commentary: normothermic regional perfusion: ethical issues in thoracic organ donation: an important discussion, but stop the press! J. Thorac. Cardiovasc. Surg. 164, 155–156 (2022).

    Article  PubMed  Google Scholar 

  122. Kon, Z. N., Smith, D. E., Carillo, J. A. & Moazami, N. Commentary: the future is now — heart donation after circulatory death. J. Thorac. Cardiovasc. Surg. 161, 1342–1343 (2021).

    Article  PubMed  Google Scholar 

  123. Moazami, N., Smith, D. & Galloway, A. Logistics for expanding heart transplantation from donation after circulatory death using normothermic regional perfusion. JTCVS Tech. 12, 110–112 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hardy, J. D. et al. Heart transplantation in man. Developmental studies and report of a case. J. Am. Med. Assoc. 188, 1132–1140 (1964).

    Article  CAS  Google Scholar 

  125. Shu, S., Ren, J. & Song, J. Cardiac xenotransplantation: a promising way to treat advanced heart failure. Heart Fail. Rev. 27, 71–91 (2022).

    Article  PubMed  Google Scholar 

  126. Yang, B. Q., Park, A. C. & Schilling, J. D. Cardiac xenotransplantation: 5 things every cardiologist should know. JACC Basic Transl. Sci. 7, 518–521 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Montgomery, R. A., Mehta, S. A., Parent, B. & Griesemer, A. Next steps for the xenotransplantation of pig organs into humans. Nat. Med. 28, 1533–1536 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Vadori, M. & Cozzi, E. The immunological barriers to xenotransplantation. Tissue Antigens 86, 239–253 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Pierson, R. N. 3rd Progress toward pig-to-human xenotransplantation. N. Engl. J. Med. 386, 1871–1873 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Boulet, J., Cunningham, J. W. & Mehra, M. R. Cardiac xenotransplantation: challenges, evolution, and advances. JACC Basic Transl. Sci. 7, 716–729 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Sykes, M. & Sachs, D. H. Transplanting organs from pigs to humans. Sci. Immunol. 4, eaau6298 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Phimister, E. G. Genetic modification in pig-to-human transplantation. N. Engl. J. Med. 387, 79–82 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Hamadeh, R. M., Galili, U., Zhou, P. & Griffiss, J. M. Anti-alpha-galactosyl immunoglobulin A (IgA), IgG, and IgM in human secretions. Clin. Diagn. Lab. Immunol. 2, 125–131 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zappe, A., Rosenlöcher, J., Kohla, G., Hinderlich, S. & Parr, M. K. Purification and characterization of antibodies directed against the α-Gal epitope. BioChem 1, 81–97 (2021).

    Article  Google Scholar 

  135. Sandrin, M. S. & McKenzie, I. F. Galα(1,3)Gal, the major xenoantigen(s) recognised in pigs by human natural antibodies. Immunol. Rev. 141, 169–190 (1994).

    Article  CAS  PubMed  Google Scholar 

  136. Candinas, D. & Adams, D. H. Xenotransplantation: postponed by a millennium? Q. J. Med. 93, 63–66 (2000).

    Article  CAS  Google Scholar 

  137. Dai, Y. et al. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20, 251–255 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Dolgin, E. First GM pigs for allergies. Could xenotransplants be next? Nat. Biotechnol. 39, 397–400 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. US Food & Drug Administration. FDA Approves First-of-its-Kind Intentional Genomic Alteration in Line of Domestic Pigs for Both Human Food, Potential Therapeutic Uses https://www.fda.gov/news-events/press-announcements/fda-approves-first-its-kind-intentional-genomic-alteration-line-domestic-pigs-both-human-food (2020).

  140. Montgomery, R. A. et al. Results of two cases of pig-to-human kidney xenotransplantation. N. Engl. J. Med. 386, 1889–1898 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Mehra, M. R. Cardiac xenotransplantation: rebirth amidst an uncertain future. J. Card. Fail. 28, 873–874 (2022).

    Article  PubMed  Google Scholar 

  142. Miyagawa, S. et al. Aspects of the complement system in new era of xenotransplantation. Front. Immunol. 13, 860165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Porrett, P. M. et al. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am. J. Transplant. 22, 1037–1053 (2022).

    Article  PubMed  Google Scholar 

  144. Boksa, M., Zeyland, J., Słomski, R. & Lipiński, D. Immune modulation in xenotransplantation. Arch. Immunol. Ther. Exp. 63, 181–192 (2015).

    Article  CAS  Google Scholar 

  145. Yamamoto, T. et al. Life-supporting kidney xenotransplantation from genetically engineered pigs in baboons: a comparison of two immunosuppressive regimens. Transplantation 103, 2090–2104 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Adams, A. B. et al. Anti-C5 antibody tesidolumab reduces early antibody-mediated rejection and prolongs survival in renal xenotransplantation. Ann. Surg. 274, 473–480 (2021).

    Article  PubMed  Google Scholar 

  147. Eiras, G. et al. Species differences in sensitivity of T lymphocytes to immunosuppressive effects of FK 506. Transplantation 49, 1170–1172 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cooper, D. K. C. et al. Report of the Xenotransplantation Advisory Committee of the International Society for Heart and Lung Transplantation: the present status of xenotransplantation and its potential role in the treatment of end-stage cardiac and pulmonary diseases. J. Heart Lung Transplant. 19, 1125–1165 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Platt, J., DiSesa, V., Gail, D. & Massicot-Fisher, J. Recommendations of the National Heart, Lung, and Blood Institute Heart and Lung Xenotransplantation Working Group. Circulation 106, 1043–1047 (2002).

    Article  PubMed  Google Scholar 

  150. Niu, D. et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357, 1303–1307 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Griffith, B. P. et al. Genetically modified porcine-to-human cardiac xenotransplantation. N. Engl. J. Med. 387, 35–44 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Denner, J. et al. Impact of porcine cytomegalovirus on long-term orthotopic cardiac xenotransplant survival. Sci. Rep. 10, 17531 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. NYU Langone Health. Successful Heart Xenotransplant Experiments at NYU Langone Set Protocol for Pig-to-Human Organ Transplants https://nyulangone.org/news/successful-heart-xenotransplant-experiments-nyu-langone-set-protocol-pig-human-organ-transplants (2022).

  154. Schoenrath, F., Falk, V. & Emmert, M. Y. Xenotransplantation in the era of a zoonotic pandemic. Eur. Heart J. 42, 1283–1285 (2021).

    Article  PubMed  Google Scholar 

  155. Pig-to-human transplants take a leap toward reality. Nat. Med. 28, 423 (2022).

    Article  Google Scholar 

  156. Mann, D. L. When pigs fly what will the future of heart failure therapeutics look like? JACC Basic. Transl. Sci. 7, 745–746 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kuehn, B. M. First pig-to-human heart transplant marks a milestone in xenotransplantation. Circulation 145, 1870–1871 (2022).

    Article  PubMed  Google Scholar 

  158. Pierson, R. N. 3rd et al. Progress toward cardiac xenotransplantation. Circulation 142, 1389–1398 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Chaban, R., Cooper, D. K. C. & Pierson, R. N. 3rd Pig heart and lung xenotransplantation: present status. J. Heart Lung Transplant. 41, 1014–1022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Reichart, B. et al. Pig-to-non-human primate heart transplantation: the final step toward clinical xenotransplantation? J. Heart Lung Transplant. 39, 751–757 (2020).

    Article  PubMed  Google Scholar 

  161. Farr, M. & Stehlik, J. Heart xenotransplant: a door that is finally opening. Circulation 145, 871–873 (2022).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.J., S.M., J.F. and L.M. researched data for the article. All the authors contributed to the discussion of content. S.J., S.M., J.F., L.M. and M.M. wrote the manuscript. All the authors reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Stephanie Jou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Axel Haverich, Bruno Reichart and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jou, S., Mendez, S.R., Feinman, J. et al. Heart transplantation: advances in expanding the donor pool and xenotransplantation. Nat Rev Cardiol 21, 25–36 (2024). https://doi.org/10.1038/s41569-023-00902-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00902-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing