Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Genetic clues to the pathogenesis of Parkinson's disease

Abstract

Recent years have seen an explosion in the rate of discovery of genetic defects linked to Parkinson's disease. These breakthroughs have not provided a direct explanation for the disease process. Nevertheless, they have helped transform Parkinson's disease research by providing tangible clues to the neurobiology of the disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic mutations and the pathogenesis of PD.

Similar content being viewed by others

References

  1. Dauer, W. & Przedborski, S. Parkinson's disease: mechanisms and models. Neuron 39, 889–909 (2003).

    Article  CAS  Google Scholar 

  2. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  Google Scholar 

  3. Spillantini, M.G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  Google Scholar 

  4. Polymeropoulos, M.H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  Google Scholar 

  5. Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nat. Genet. 18, 107–108 (1998).

    Article  Google Scholar 

  6. Zarranz, J.J. et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173 (2004).

    Article  CAS  Google Scholar 

  7. Lo Bianco, C., Ridet, J.L., Schneider, B.L., Deglon, N. & Aebischer, P. α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proc. Natl. Acad. Sci. USA 99, 10813–8 (2002).

    Article  CAS  Google Scholar 

  8. Kirik, D. et al. Nigrostriatal α-synucleinopathy induced by viral vector-mediated overexpression of human α-synuclein: a new primate model of Parkinson's disease. Proc. Natl. Acad. Sci. USA 100, 2884–2889 (2003).

    Article  CAS  Google Scholar 

  9. Abeliovich, A. et al. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239–252 (2000).

    Article  CAS  Google Scholar 

  10. Dauer, W. et al. Resistance of α-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc. Natl. Acad. Sci. USA 99, 14524–14529 (2002).

    Article  CAS  Google Scholar 

  11. Singleton, A.B. et al. α-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    Article  CAS  Google Scholar 

  12. Chartier-Harlin, M.C. et al. α-Synuclein locus duplication causes familial Parkinson's disease. Lancet (in the press).

  13. Outeiro, T.F. & Lindquist, S. Yeast cells provide insight into α-synuclein biology and pathobiology. Science 302, 1772–1775 (2003).

    Article  CAS  Google Scholar 

  14. Jao, C.C., Der-Sarkissian, A., Chen, J. & Langen, R. Structure of membrane-bound α-synuclein studied by site-directed spin labeling. Proc. Natl. Acad. Sci. USA 101, 8331–8336 (2004).

    Article  CAS  Google Scholar 

  15. Payton, J.E., Perrin, R.J., Woods, W.S. & George, J.M. Structural determinants of PLD2 inhibition by α-synuclein. J. Mol. Biol. 337, 1001–1009 (2004).

    Article  CAS  Google Scholar 

  16. Xu, J. et al. Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat. Med. 8, 600–606 (2002).

    Article  CAS  Google Scholar 

  17. Lee, H.J., Choi, C. & Lee, S.J. Membrane-bound α-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J. Biol. Chem. 277, 671–678 (2002).

    Article  CAS  Google Scholar 

  18. Lee, H.J., Khoshaghideh, F., Patel, S. & Lee, S.J. Clearance of α-synuclein oligomeric intermediates via the lysosomal degradation pathway. J. Neurosci. 24, 1888–1896 (2004).

    Article  CAS  Google Scholar 

  19. Conway, K.A. et al. Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA 97, 571–576 (2000).

    Article  CAS  Google Scholar 

  20. Volles, M.J. et al. Vesicle permeabilization by protofibrillar α-synuclein: implications for the pathogenesis and treatment of Parkinson's disease. Biochemistry 40, 7812–7819 (2001).

    Article  CAS  Google Scholar 

  21. Conway, K.A., Rochet, J.C., Bieganski, R.M. & Lansbury, P.T. Jr. Kinetic stabilization of the α-synuclein protofibril by a dopamine–α-synuclein adduct. Science 294, 1346–1349 (2001).

    Article  CAS  Google Scholar 

  22. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  Google Scholar 

  23. Goldberg, M.S. et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem. 278, 43628–43635 (2003).

    Article  CAS  Google Scholar 

  24. Pesah, Y. et al. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 131, 2183–2194 (2004).

    Article  CAS  Google Scholar 

  25. Greene, J.C. et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. USA 100, 4078–4083 (2003).

    Article  CAS  Google Scholar 

  26. Palacino, J.J. et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. 279, 18614–18622 (2004).

    Article  CAS  Google Scholar 

  27. Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25, 302–305 (2000).

    Article  CAS  Google Scholar 

  28. Zhang, Y. et al. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl. Acad. Sci. USA 97, 13354–13359 (2000).

    Article  CAS  Google Scholar 

  29. Chung, K.K. et al. S-Nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science 304, 1328–1331 (2004).

    Article  CAS  Google Scholar 

  30. Petrucelli, L. et al. Parkin protects against the toxicity associated with mutant α-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36, 1007–1019 (2002).

    Article  CAS  Google Scholar 

  31. Staropoli, J.F. et al. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 37, 735–749 (2003).

    Article  CAS  Google Scholar 

  32. Leroy, E. et al. The ubiquitin pathway in Parkinson's disease. Nature 55, 512–521 (2004).

    Google Scholar 

  33. Maraganore, D.M. et al. UCHL1 is a Parkinson's disease susceptibility gene. Ann. Neurol. 55, 512–521 (2004).

    Article  Google Scholar 

  34. Saigoh, K. et al. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat. Genet. 23, 47–51 (1999).

    Article  CAS  Google Scholar 

  35. Liu, Y., Fallon, L., Lashuel, H.A., Liu, Z. & Lansbury, P.T. Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and Parkinson's disease susceptibility. Cell 111, 209–218 (2002).

    Article  CAS  Google Scholar 

  36. Hemelaar, J. et al. Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins. Mol. Cell Biol. 24, 84–95 (2004).

    Article  CAS  Google Scholar 

  37. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003).

    Article  CAS  Google Scholar 

  38. Hague, S. et al. Early-onset Parkinson's disease caused by a compound heterozygous DJ-1 mutation. Ann. Neurol. 54, 271–274 (2003).

    Article  CAS  Google Scholar 

  39. Abou-Sleiman, P.M., Healy, D.G., Quinn, N., Lees, A.J. & Wood, N.W. The role of pathogenic DJ-1 mutations in Parkinson's disease. Ann. Neurol. 54, 283–286 (2003).

    Article  CAS  Google Scholar 

  40. Cookson, M.R. Pathways to Parkinsonism. Neuron 37, 7–10 (2003).

    Article  CAS  Google Scholar 

  41. Niki, T., Takahashi-Niki, K., Taira, T., Iguchi-Ariga, S.M. & Ariga, H. DJBP: a novel DJ-1-binding protein, negatively regulates the androgen receptor by recruiting histone deacetylase complex, and DJ-1 antagonizes this inhibition by abrogation of this complex. Mol. Cancer Res. 1, 247–261 (2003).

    CAS  PubMed  Google Scholar 

  42. Takahashi, K. et al. DJ-1 positively regulates the androgen receptor by impairing the binding of PIASx α to the receptor. J. Biol. Chem. 276, 37556–37563 (2001).

    Article  CAS  Google Scholar 

  43. Taira, T. et al. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. 5, 213–218 (2004).

    Article  CAS  Google Scholar 

  44. Quigley, P.M., Korotkov, K., Baneyx, F. & Hol, W.G. The 1.6-A crystal structure of the class of chaperones represented by Escherichia coli Hsp31 reveals a putative catalytic triad. Proc. Natl. Acad. Sci. USA 100, 3137–3142 (2003).

    Article  CAS  Google Scholar 

  45. Moore, D.J., Zhang, L., Dawson, T.M. & Dawson, V.L. A missense mutation (L166P) in DJ-1, linked to familial Parkinson's disease, confers reduced protein stability and impairs homo-oligomerization. J. Neurochem. 87, 1558–1567 (2003).

    Article  CAS  Google Scholar 

  46. Olzmann, J.A. et al. Familial Parkinson's disease-associated L166P mutation disrupts DJ-1 protein folding and function. J. Biol. Chem. 279, 8506–8515 (2004).

    Article  CAS  Google Scholar 

  47. Bandopadhyay, R. et al. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease. Brain 127, 420–430 (2004).

    Article  Google Scholar 

  48. Valente, E.M. et al. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am. J. Hum. Genet. 68, 895–900 (2001).

    Article  CAS  Google Scholar 

  49. Valente, E.M. et al. PARK6-linked parkinsonism occurs in several European families. Ann. Neurol. 51, 14–18 (2002).

    Article  CAS  Google Scholar 

  50. Valente, E.M. et al. Hereditary early-onset parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    Article  CAS  Google Scholar 

  51. Nakajima, A., Kataoka, K., Hong, M., Sakaguchi, M. & Huh, N.H. BRPK, a novel protein kinase showing increased expression in mouse cancer cell lines with higher metastatic potential. Cancer Lett. 201, 195–201 (2003).

    Article  CAS  Google Scholar 

  52. Unoki, M. & Nakamura, Y. Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene 20, 4457–4465 (2001).

    Article  CAS  Google Scholar 

  53. Khan, N.L. et al. Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET study. Ann. Neurol. 52, 849–853 (2002).

    Article  Google Scholar 

  54. Farrer, M. et al. Lewy bodies and parkinsonism in families with parkin mutations. Ann. Neurol. 50, 293–300 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R.E. Burke, D. Sulzer and W. Dauer for insightful comments on the manuscript, M.J. Farrer and A.B. Singleton for input concerning PARK4, and M. Lucas for assistance in preparing this manuscript. The authors are supported by NIH/NINDS (grants R29 NS37345, RO1 NS38586 and NS42269, P50 NS38370, and P01 NS11766-27A1), NIH/NIA grant (RO1 AG021617-01), the US Department of Defense (DAMD 17-99-1-9471, DAMD 17-03-1 and DAMD17-03-1-0428), the Lowenstein Foundation, the Lillian Goldman Charitable Trust, the Parkinson's Disease Foundation, the American Parkinson Disease Association, and MDA/Wings-Over-Wall Street.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Przedborski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vila, M., Przedborski, S. Genetic clues to the pathogenesis of Parkinson's disease. Nat Med 10 (Suppl 7), S58–S62 (2004). https://doi.org/10.1038/nm1068

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1068

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing