Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lymphocyte calcium signaling from membrane to nucleus

Abstract

Ca2+ signals control a variety of lymphocyte responses, ranging from short-term cytoskeletal modifications to long-term changes in gene expression. The identification of molecules and channels that modulate Ca2+ entry into T and B lymphocytes has both provided details of the molecular events leading to immune responses and raised controversy. Here we review studies of the pathways that allow Ca2+ entry, the function of Ca2+ in the regulation of cell polarity and motility and the principles by which Ca2+-dependent transcription regulates lymphocyte function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of Ca2+ flux in lymphocytes.
Figure 2: Insulating the nucleus from transient Ca2+ fluxes.

Similar content being viewed by others

References

  1. Bautista, D.M., Hoth, M. & Lewis, R.S. Enhancement of calcium signalling dynamics and stability by delayed modulation of the plasma-membrane calcium-ATPase in human T cells. J. Physiol. (Lond.) 541, 877–894 (2002).

    Article  CAS  Google Scholar 

  2. Bautista, D.M. & Lewis, R.S. Modulation of plasma membrane calcium-ATPase activity by local calcium microdomains near CRAC channels in human T cells. J. Physiol. (Lond.) 556, 805–817 (2004).

    Article  CAS  Google Scholar 

  3. Hoth, M., Fanger, C.M. & Lewis, R.S. Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J. Cell Biol. 137, 633–648 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoth, M., Button, D.C. & Lewis, R.S. Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc. Natl. Acad. Sci. USA 97, 10607–10612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Makowska, A., Zablocki, K. & Duszynski, J. The role of mitochondria in the regulation of calcium influx into Jurkat cells. Eur. J. Biochem. 267, 877–884 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Lewis, R.S. & Cahalan, M.D. Potassium and calcium channels in lymphocytes. Annu. Rev. Immunol. 13, 623–653 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Berridge, M.J., Lipp, P. & Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Lewis, R.S. Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol. 19, 497–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Randriamampita, C. & Trautmann, A. Ca2+ signals and T lymphocytes; new mechanisms and functions in Ca2+ signalling. Biol. Cell. 96, 69–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Huang, Y. & Wange, R.L. T cell receptor signaling: beyond complex complexes. J. Biol. Chem. 279, 28827–28830 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Patterson, R.L. et al. Phospholipase C-γ is required for agonist-induced Ca2+ entry. Cell 111, 529–541 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. van Rossum, D.B. et al. Phospholipase Cγ1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434, 99–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Yu, P. et al. Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase C γ-2 that specifically increases external Ca2+ entry. Immunity 22, 451–465 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. Stork, B. et al. Grb2 and the non-T cell activation linker NTAL constitute a Ca2+-regulating signal circuit in B lymphocytes. Immunity 21, 681–691 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Singh, D.K. et al. The strength of receptor signaling is centrally controlled through a cooperative loop between Ca2+ and an oxidant signal. Cell 121, 281–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Brdicka, T. et al. Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J. Exp. Med. 196, 1617–1626 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Janssen, E., Zhu, M., Zhang, W. & Koonpaew, S. LAB: a new membrane-associated adaptor molecule in B cell activation. Nat. Immunol. 4, 117–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Y. et al. Single and combined deletions of the NTAL/LAB and LAT adaptors minimally affect B-cell development and function. Mol. Cell. Biol. 25, 4455–4465 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Volna, P. et al. Negative regulation of mast cell signaling and function by the adaptor LAB/NTAL. J. Exp. Med. 200, 1001–1013 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu, M., Liu, Y., Koonpaew, S., Granillo, O. & Zhang, W. Positive and negative regulation of FcepsilonRI-mediated signaling by the adaptor protein LAB/NTAL. J. Exp. Med. 200, 991–1000 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Janssen, E., Zhu, M., Craven, B. & Zhang, W. Linker for activation of B cells: a functional equivalent of a mutant linker for activation of T cells deficient in phospholipase C-γ1 binding. J. Immunol. 172, 6810–6819 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Koonpaew, S., Janssen, E., Zhu, M. & Zhang, W. The importance of three membrane-distal tyrosines in the adaptor protein NTAL/LAB. J. Biol. Chem. 279, 11229–11235 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Penninger, J.M. & Crabtree, G.R. The actin cytoskeleton and lymphocyte activation. Cell 96, 9–12 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Miletic, A.V., Swat, M., Fujikawa, K. & Swat, W. Cytoskeletal remodeling in lymphocyte activation. Curr. Opin. Immunol. 15, 261–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Huppa, J.B., Gleimer, M., Sumen, C. & Davis, M.M. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat. Immunol. 4, 749–755 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, K.H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Holsinger, L.J. et al. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr. Biol. 8, 563–572 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Valitutti, S., Dessing, M., Aktories, K., Gallati, H. & Lanzavecchia, A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med. 181, 577–584 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Rivas, F.V., O'Keefe, J.P., Alegre, M.L. & Gajewski, T.F. Actin cytoskeleton regulates calcium dynamics and NFAT nuclear duration. Mol. Cell. Biol. 24, 1628–1639 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hao, S. & August, A. Actin depolymerization transduces the strength of B-cell receptor stimulation. Mol. Biol. Cell 16, 2275–2284 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mills, J.W., Falsig Pedersen, S., Walmod, P.S. & Hoffmann, E.K. Effect of cytochalasins on F-actin and morphology of Ehrlich ascites tumor cells. Exp. Cell Res. 261, 209–219 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Tybulewicz, V.L., Ardouin, L., Prisco, A. & Reynolds, L.F. Vav1: a key signal transducer downstream of the TCR. Immunol. Rev. 192, 42–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Gomez, M., Tybulewicz, V. & Cantrell, D.A. Control of pre-T cell proliferation and differentiation by the GTPase Rac-I. Nat. Immunol. 1, 348–352 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, J. et al. Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein-deficient lymphocytes. J. Exp. Med. 190, 1329–1342 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Walmsley, M.J. et al. Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science 302, 459–462 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Tedford, K. et al. Compensation between Vav-1 and Vav-2 in B cell development and antigen receptor signaling. Nat. Immunol. 2, 548–555 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Fischer, K.D. et al. Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr. Biol. 8, 554–562 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Snapper, S.B. et al. WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J. Leukoc. Biol. 77, 993–998 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Huang, W., Ochs, H.D., Dupont, B. & Vyas, Y.M. The Wiskott-Aldrich syndrome protein regulates nuclear translocation of NFAT2 and NF-κB (RelA) independently of its role in filamentous actin polymerization and actin cytoskeletal rearrangement. J. Immunol. 174, 2602–2611 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Cannon, J.L. & Burkhardt, J.K. Differential roles for Wiskott-Aldrich syndrome protein in immune synapse formation and IL-2 production. J. Immunol. 173, 1658–1662 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Silvin, C., Belisle, B. & Abo, A. A role for Wiskott-Aldrich syndrome protein in T-cell receptor-mediated transcriptional activation independent of actin polymerization. J. Biol. Chem. 276, 21450–21457 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Tybulewicz, V.L. Vav-family proteins in T-cell signalling. Curr. Opin. Immunol. 17, 267–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Turner, M. B-cell development and antigen receptor signalling. Biochem. Soc. Trans. 30, 812–815 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Caloca, M.J., Zugaza, J.L., Matallanas, D., Crespo, P. & Bustelo, X.R. Vav mediates Ras stimulation by direct activation of the GDP/GTP exchange factor Ras GRP1. EMBO J. 22, 3326–3336 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reynolds, L.F. et al. Vav1 transduces T cell receptor signals to the activation of the Ras/ERK pathway via LAT, Sos, and RasGRP1. J. Biol. Chem. 279, 18239–18246 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Cannon, J.L. & Burkhardt, J.K. The regulation of actin remodeling during T-cell-APC conjugate formation. Immunol. Rev. 186, 90–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Zeng, R. et al. SLP-76 coordinates Nck-dependent Wiskott-Aldrich syndrome protein recruitment with Vav-1/Cdc42-dependent Wiskott-Aldrich syndrome protein activation at the T cell-APC contact site. J. Immunol. 171, 1360–1368 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Higgs, H.N. & Pollard, T.D. Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu. Rev. Biochem. 70, 649–676 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Gomez, T.S. et al. Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse. Nat. Immunol. 6, 261–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–356 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Premack, B.A., McDonald, T.V. & Gardner, P. Activation of Ca2+ current in Jurkat T cells following the depletion of Ca2+ stores by microsomal Ca2+-ATPase inhibitors. J. Immunol. 152, 5226–5240 (1994).

    CAS  PubMed  Google Scholar 

  54. Zweifach, A. & Lewis, R.S. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc. Natl. Acad. Sci. USA 90, 6295–6299 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Takemura, H., Hughes, A.R., Thastrup, O. & Putney, J.W., Jr. Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J. Biol. Chem. 264, 12266–12271 (1989).

    Article  CAS  PubMed  Google Scholar 

  56. Fanger, C.M., Hoth, M., Crabtree, G.R. & Lewis, R.S. Characterization of T cell mutants with defects in capacitative calcium entry: genetic evidence for the physiological roles of CRAC channels. J. Cell Biol. 131, 655–667 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Serafini, A.T. et al. Isolation of mutant T lymphocytes with defects in capacitative calcium entry. Immunity 3, 239–250 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Feske, S., Giltnane, J., Dolmetsch, R., Staudt, L.M. & Rao, A. Gene regulation mediated by calcium signals in T lymphocytes. Nat. Immunol. 2, 316–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, S.L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ertel, E.A. et al. Nomenclature of voltage-gated calcium channels. Neuron 25, 533–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Genazzani, A.A., Carafoli, E. & Guerini, D. Calcineurin controls inositol 1,4,5-trisphosphate type 1 receptor expression in neurons. Proc. Natl. Acad. Sci. USA 96, 5797–5801 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Graef, I.A. et al. L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 401, 703–708 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Freedman, B.D., Price, M.A. & Deutsch, C.J. Evidence for voltage modulation of IL-2 production in mitogen-stimulated human peripheral blood lymphocytes. J. Immunol. 149, 3784–3794 (1992).

    CAS  PubMed  Google Scholar 

  66. Price, M., Lee, S.C. & Deutsch, C. Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proc. Natl. Acad. Sci. USA 86, 10171–10175 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gomes, B. et al. Lymphocyte calcium signaling involves dihydropyridine-sensitive L-type calcium channels: facts and controversies. Crit. Rev. Immunol. 24, 425–447 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Chandy, K.G., DeCoursey, T.E., Cahalan, M.D., McLaughlin, C. & Gupta, S. Voltage-gated potassium channels are required for human T lymphocyte activation. J. Exp. Med. 160, 369–385 (1984).

    Article  CAS  PubMed  Google Scholar 

  69. Chandy, K.G. et al. K+ channels as targets for specific immunomodulation. Trends Pharmacol. Sci. 25, 280–289 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sadighi Akha, A.A. et al. Anti-Ig-induced calcium influx in rat B lymphocytes mediated by cGMP through a dihydropyridine-sensitive channel. J. Biol. Chem. 271, 7297–7300 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Grafton, G., Stokes, L., Toellner, K.M. & Gordon, J. A non-voltage-gated calcium channel with L-type characteristics activated by B cell receptor ligation. Biochem. Pharmacol. 66, 2001–2009 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Kotturi, M.F., Carlow, D.A., Lee, J.C., Ziltener, H.J. & Jefferies, W.A. Identification and functional characterization of voltage-dependent calcium channels in T lymphocytes. J. Biol. Chem. 278, 46949–46960 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Kotturi, M.F. & Jefferies, W.A. Molecular characterization of L-type calcium channel splice variants expressed in human T lymphocytes. Mol. Immunol. 42, 1461–1474 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Stokes, L., Gordon, J. & Grafton, G. Non-voltage-gated L-type Ca2+ channels in human T cells: pharmacology and molecular characterization of the major α pore-forming and auxiliary β-subunits. J. Biol. Chem. 279, 19566–19573 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Clapham, D.E., Runnels, L.W. & Strubing, C. The TRP ion channel family. Nat. Rev. Neurosci. 2, 387–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Gamberucci, A. et al. Diacylglycerol activates the influx of extracellular cations in T-lymphocytes independently of intracellular calcium-store depletion and possibly involving endogenous TRP6 gene products. Biochem. J. 364, 245–254 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Philipp, S. et al. TRPC3 mediates T-cell receptor-dependent calcium entry in human T-lymphocytes. J. Biol. Chem. 278, 26629–26638 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, X., Bandyopadhyay, B.C., Singh, B.B., Groschner, K. & Ambudkar, I.S. Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J. Biol. Chem. 280, 21600–21606 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Zagranichnaya, T.K., Wu, X. & Villereal, M.L. Endogenous TRPC1, TRPC3 and TRPC7 proteins combine to form native store-operated channels in HEK-293 cells. J. Biol. Chem. 280, 29559–29569 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Lintschinger, B. et al. Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J. Biol. Chem. 275, 27799–27805 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Hardie, R.C. Regulation of TRP channels via lipid second messengers. Annu. Rev. Physiol. 65, 735–759 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Hofmann, T. et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397, 259–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Venkatachalam, K., Zheng, F. & Gill, D.L. Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J. Biol. Chem. 278, 29031–29040 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Yue, L., Peng, J.B., Hediger, M.A. & Clapham, D.E. CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature 410, 705–709 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Voets, T. et al. CaT1 and the calcium release-activated calcium channel manifest distinct pore properties. J. Biol. Chem. 276, 47767–47770 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Murakami, M. et al. Identification and characterization of the murine TRPM4 channel. Biochem. Biophys. Res. Commun. 307, 522–528 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Launay, P. et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109, 397–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Xu, X.Z., Moebius, F., Gill, D.L. & Montell, C. Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc. Natl. Acad. Sci. USA 98, 10692–10697 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nilius, B. et al. Voltage dependence of the Ca2+-activated cation channel TRPM4. J. Biol. Chem. 278, 30813–30820 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Launay, P. et al. TRPM4 regulates calcium oscillations after T cell activation. Science 306, 1374–1377 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Nilius, B. et al. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J. Biol. Chem. 280, 6423–6433 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Goldsmith, M.A. & Weiss, A. Early signal transduction by the antigen receptor without commitment to T cell activation. Science 240, 1029–1031 (1988).

    Article  CAS  PubMed  Google Scholar 

  93. Delon, J., Bercovici, N., Liblau, R. & Trautmann, A. Imaging antigen recognition by naive CD4+ T cells: compulsory cytoskeletal alterations for the triggering of an intracellular calcium response. Eur. J. Immunol. 28, 716–729 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Negulescu, P.A., Krasieva, T.B., Khan, A., Kerschbaum, H.H. & Cahalan, M.D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4, 421–430 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Wulfing, C. & Davis, M.M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Jacobelli, J., Chmura, S.A., Buxton, D.B., Davis, M.M. & Krummel, M.F. A single class II myosin modulates T cell motility and stopping, but not synapse formation. Nat. Immunol. 5, 531–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Heath, K.E. et al. Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias: May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes. Am. J. Hum. Genet. 69, 1033–1045 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Conti, M.A., Even-Ram, S., Liu, C., Yamada, K.M. & Adelstein, R.S. Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice. J. Biol. Chem. 279, 41263–41266 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Matsushita, T. et al. Targeted disruption of mouse ortholog of the human MYH9 responsible for macrothrombocytopenia with different organ involvement: hematological, nephrological, and otological studies of heterozygous KO mice. Biochem. Biophys. Res. Commun. 325, 1163–1171 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Bhakta, N.R., Oh, D.Y. & Lewis, R.S. Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nat. Immunol. 6, 143–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Esser, M.T., Krishnamurthy, B. & Braciale, V.L. Distinct T cell receptor signaling requirements for perforin- or FasL-mediated cytotoxicity. J. Exp. Med. 183, 1697–1706 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Takayama, H. & Sitkovsky, M.V. Antigen receptor-regulated exocytosis in cytotoxic T lymphocytes. J. Exp. Med. 166, 725–743 (1987).

    Article  CAS  PubMed  Google Scholar 

  103. Kupfer, A., Dennert, G. & Singer, S.J. The reorientation of the Golgi apparatus and the microtubule-organizing center in the cytotoxic effector cell is a prerequisite in the lysis of bound target cells. J. Mol. Cell. Immunol. 2, 37–49 (1985).

    CAS  PubMed  Google Scholar 

  104. Lowin-Kropf, B., Shapiro, V.S. & Weiss, A. Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism. J. Cell Biol. 140, 861–871 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kuhn, J.R. & Poenie, M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 16, 111–121 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Kuhne, M.R. et al. Linker for activation of T cells, ζ-associated protein-70, and Src homology 2 domain-containing leukocyte protein-76 are required for TCR-induced microtubule-organizing center polarization. J. Immunol. 171, 860–866 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Lyubchenko, T.A., Wurth, G.A. & Zweifach, A. Role of calcium influx in cytotoxic T lymphocyte lytic granule exocytosis during target cell killing. Immunity 15, 847–859 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Esser, M.T., Haverstick, D.M., Fuller, C.L., Gullo, C.A. & Braciale, V.L. Ca2+ signaling modulates cytolytic T lymphocyte effector functions. J. Exp. Med. 187, 1057–1067 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Purbhoo, M.A., Irvine, D.J., Huppa, J.B. & Davis, M.M. T cell killing does not require the formation of a stable mature immunological synapse. Nat. Immunol. 5, 524–530 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Thelen, M. Dancing to the tune of chemokines. Nat. Immunol. 2, 129–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287, 1046–1049 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Cinamon, G., Shinder, V. & Alon, R. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nat. Immunol. 2, 515–522 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Neptune, E.R. & Bourne, H.R. Receptors induce chemotaxis by releasing the βγ subunit of Gi, not by activating Gq or Gs . Proc. Natl. Acad. Sci. USA 94, 14489–14494 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mandeville, J.T. & Maxfield, F.R. Effects of buffering intracellular free calcium on neutrophil migration through three-dimensional matrices. J. Cell. Physiol. 171, 168–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Eddy, R.J., Pierini, L.M., Matsumura, F. & Maxfield, F.R. Ca2+-dependent myosin II activation is required for uropod retraction during neutrophil migration. J. Cell Sci. 113, 1287–1298 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Spitaler, M. & Cantrell, D.A. Protein kinase C and beyond. Nat. Immunol. 5, 785–790 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Goldsmith, M.A., Desai, D.M., Schultz, T. & Weiss, A. Function of a heterologous muscarinic receptor in T cell antigen receptor signal transduction mutants. J. Biol. Chem. 264, 17190–17197 (1989).

    Article  CAS  PubMed  Google Scholar 

  119. Dolmetsch, R.E., Lewis, R.S., Goodnow, C.C. & Healy, J.I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Dolmetsch, R.E., Xu, K. & Lewis, R.S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392, 933–936 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Lewis, R.S. Calcium oscillations in T-cells: mechanisms and consequences for gene expression. Biochem. Soc. Trans. 31, 925–929 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. McKinsey, T.A., Zhang, C.L. & Olson, E.N. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14–3-3 to histone deacetylase 5. Proc. Natl. Acad. Sci. USA 97, 14400–14405 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Means, A.R. Regulatory cascades involving calmodulin-dependent protein kinases. Mol. Endocrinol. 14, 4–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. McKinsey, T.A., Zhang, C.L., Lu, J. & Olson, E.N. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106–111 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pan, F., Means, A.R. & Liu, J.O. Calmodulin-dependent protein kinase IV regulates nuclear export of Cabin1 during T-cell activation. EMBO J. 24, 2104–2113 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Youn, H.D. & Liu, J.O. Cabin1 represses MEF2-dependent Nur77 expression and T cell apoptosis by controlling association of histone deacetylases and acetylases with MEF2. Immunity 13, 85–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Meyer, T., Hanson, P.I., Stryer, L. & Schulman, H. Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science 256, 1199–1202 (1992).

    Article  CAS  PubMed  Google Scholar 

  128. Chow, F.A., Anderson, K.A., Noeldner, P.K. & Means, A.R. The autonomous activity of calcium/calmodulin-dependent protein kinase IV is required for its role in transcription. J. Biol. Chem. 280, 20530–20538 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Westphal, R.S., Anderson, K.A., Means, A.R. & Wadzinski, B.E. A signaling complex of Ca2+-calmodulin-dependent protein kinase IV and protein phosphatase 2A. Science 280, 1258–1261 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Anderson, K.A., Noeldner, P.K., Reece, K., Wadzinski, B.E. & Means, A.R. Regulation and function of the calcium/calmodulin-dependent protein kinase IV/protein serine/threonine phosphatase 2A signaling complex. J. Biol. Chem. 279, 31708–31716 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Ishida, A., Kameshita, I. & Fujisawa, H. A novel protein phosphatase that dephosphorylates and regulates Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 273, 1904–1910 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Kitani, T. et al. Molecular cloning of Ca2+/calmodulin-dependent protein kinase phosphatase. J. Biochem. 125, 1022–1028 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815 (1991).

    Article  CAS  PubMed  Google Scholar 

  134. Emmel, E.A. et al. Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science 246, 1617–1620 (1989).

    Article  CAS  PubMed  Google Scholar 

  135. Flanagan, W.M., Corthesy, B., Bram, R.J. & Crabtree, G.R. Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352, 803–807 (1991).

    Article  CAS  PubMed  Google Scholar 

  136. Clipstone, N.A. & Crabtree, G.R. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 357, 695–697 (1992).

    Article  CAS  PubMed  Google Scholar 

  137. Timmerman, L.A., Clipstone, N.A., Ho, S.N., Northrop, J.P. & Crabtree, G.R. Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature 383, 837–840 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Loh, C. et al. Calcineurin binds the transcription factor NFAT1 and reversibly regulates its activity. J. Biol. Chem. 271, 10884–10891 (1996).

    Article  CAS  PubMed  Google Scholar 

  139. Beals, C.R., Sheridan, C.M., Turck, C.W., Gardner, P. & Crabtree, G.R. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275, 1930–1934 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. Sheridan, C.M., Heist, E.K., Beals, C.R., Crabtree, G.R. & Gardner, P. Protein kinase A negatively modulates the nuclear accumulation of NF-ATc1 by priming for subsequent phosphorylation by glycogen synthase kinase-3. J. Biol. Chem. 277, 48664–48676 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Miskin, J.E., Abrams, C.C., Goatley, L.C. & Dixon, L.K. A viral mechanism for inhibition of the cellular phosphatase calcineurin. Science 281, 562–565 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Gebert, B., Fischer, W., Weiss, E., Hoffmann, R. & Haas, R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 301, 1099–1102 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Crabtree, G.R. & Olson, E.N. NFAT signaling: choreographing the social lives of cells. Cell 109, S67–S79 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Stankunas, K., Graef, I.A., Neilson, J.R., Park, S.H. & Crabtree, G.R. Signaling through calcium, calcineurin, and NF-AT in lymphocyte activation and development. Cold Spring Harb. Symp. Quant. Biol. 64, 505–516 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Rao, A., Luo, C. & Hogan, P.G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Crabtree, G.R. Contingent genetic regulatory events in T lymphocyte activation. Science 243, 355–361 (1989).

    Article  CAS  PubMed  Google Scholar 

  148. Diehn, M. et al. Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc. Natl. Acad. Sci. USA 99, 11796–11801 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Parry, R.V. et al. Ligation of the T cell co-stimulatory receptor CD28 activates the serine-threonine protein kinase protein kinase B. Eur. J. Immunol. 27, 2495–2501 (1997).

    Article  CAS  PubMed  Google Scholar 

  150. Harada, Y. et al. Novel role of phosphatidylinositol 3-kinase in CD28-mediated costimulation. J. Biol. Chem. 276, 9003–9008 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Jones, R.G. et al. CD28-dependent activation of protein kinase B/Akt blocks Fas-mediated apoptosis by preventing death-inducing signaling complex assembly. J. Exp. Med. 196, 335–348 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kane, L.P., Andres, P.G., Howland, K.C., Abbas, A.K. & Weiss, A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines. Nat. Immunol. 2, 37–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Brunner, M.C. et al. CTLA-4-Mediated inhibition of early events of T cell proliferation. J. Immunol. 162, 5813–5820 (1999).

    CAS  PubMed  Google Scholar 

  154. Chambers, C.A. et al. The role of CTLA-4 in the regulation and initiation of T-cell responses. Immunol. Rev. 153, 27–46 (1996).

    Article  CAS  PubMed  Google Scholar 

  155. Gitler, A.D. et al. Nf1 has an essential role in endothelial cells. Nat. Genet. 33, 75–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719–731 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Jenkins, M.K., Chen, C.A., Jung, G., Mueller, D.L. & Schwartz, R.H. Inhibition of antigen-specific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J. Immunol. 144, 16–22 (1990).

    CAS  PubMed  Google Scholar 

  158. Jenkins, M.K., Pardoll, D.M., Mizuguchi, J., Chused, T.M. & Schwartz, R.H. Molecular events in the induction of a nonresponsive state in interleukin 2-producing helper T-lymphocyte clones. Proc. Natl. Acad. Sci. USA 84, 5409–5413 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Heissmeyer, V. et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat. Immunol. 5, 255–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Mammucari, C. et al. Integration of Notch 1 and calcineurin/NFAT signaling pathways in keratinocyte growth and differentiation control. Dev. Cell 8, 665–676 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Kingsbury, T.J. & Cunningham, K.W. A conserved family of calcineurin regulators. Genes Dev. 14, 1595–1604 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rothermel, B. et al. A protein encoded within the Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signaling. J. Biol. Chem. 275, 8719–8725 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Lai, M.M., Burnett, P.E., Wolosker, H., Blackshaw, S. & Snyder, S.H. Cain, a novel physiologic protein inhibitor of calcineurin. J. Biol. Chem. 273, 18325–18331 (1998).

    Article  CAS  PubMed  Google Scholar 

  164. Sun, L. et al. Cabin 1, a negative regulator for calcineurin signaling in T lymphocytes. Immunity 8, 703–711 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. Fuentes, J.J. et al. DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Hum. Mol. Genet. 9, 1681–1690 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Winslow and J. Arron for critically reading the manuscript. Supported by a Stanford Graduate Fellowship (E.M.G.), Boehringer Ingelheim Fonds (K.C.-B.), the Howard Hughes Medical Institute (G.R.C.) and the National Institutes of Health (AI-60037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald R Crabtree.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallo, E., Canté-Barrett, K. & Crabtree, G. Lymphocyte calcium signaling from membrane to nucleus. Nat Immunol 7, 25–32 (2006). https://doi.org/10.1038/ni1295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1295

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing