Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Caspase-independent cell death in T lymphocytes

Abstract

T lymphocyte death is essential for proper function of the immune system. During the decline of an immune response, most of the activated T cells die. Cell death is also responsible for eliminating autoreactive lymphocytes. Although recent studies have focused on caspase-dependent apoptotic signals, much evidence now shows that caspase- independent, necrotic cell death pathways are as important. An understanding of the molecular control of these alternative pathways is beginning to emerge. Damage of organelles including mitochondria, endoplasmic reticulum or lysozymes, leading to an increase in calcium and reactive oxygen species and the release of effector proteins, is frequently involved in caspase-independent cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromatin condensation as a criterion to distinguish apoptosis from apoptosis-like and necrosis-like PCD.

C. C.

Figure 2: Caspase-independent signaling pathways leading to MOMP.

K. R.

Figure 3: MOMP can trigger caspase-dependent and caspase-independent PCD.

C. C.

Figure 4: Death receptor–triggered caspase-dependent and caspase-independent pathways in T cells.

K. R.

Similar content being viewed by others

References

  1. Kerr, J.F.R., Wyllie, A.H. & Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Strasser, A., O'Connor, L. & Dixit, V.M. Apoptosis signaling. Annu. Rev. Biochem. 69, 217–245 (2000).

    CAS  PubMed  Google Scholar 

  3. Kaufmann, S.H. & Hengartner, M.O. Programmed cell death: alive and well in the new millennium. Trends Cell Biol. 11, 526–534 (2001).

    CAS  PubMed  Google Scholar 

  4. Leist, M. & Jäättelä, M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol. 2, 589–598 (2001).

    CAS  PubMed  Google Scholar 

  5. Lockshin, R.A. & Zakeri, Z. Caspase-independent cell deaths. Curr. Opin. Cell Biol. 14, 727–733 (2002).

    CAS  PubMed  Google Scholar 

  6. Zeuner, A., Eramo, A., Peschle, C. & De Maria, R. Caspase activation without death. Cell Death Differ. 6, 1075–1080 (1999).

    CAS  PubMed  Google Scholar 

  7. Samali, A., Zhivotovsky, B., Jones, D., Nagata, S. & Orrenius, S. Apoptosis: cell death defined by caspase activation. Cell Death Differ. 6, 495–496 (1999).

    CAS  PubMed  Google Scholar 

  8. Lockshin, R.A. & Zakeri, Z. Programmed cell death and apoptosis: origins of the theory. Nat. Rev. Mol. Cell Biol. 2, 545–550 (2001).

    CAS  PubMed  Google Scholar 

  9. Susin, S.A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).

    CAS  PubMed  Google Scholar 

  10. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489–495 (2000).

    CAS  PubMed  Google Scholar 

  11. Vercammen, D. et al. Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J. Exp. Med. 188, 919–930 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chi, S. et al. Oncogenic Ras triggers cell suicide through the activation of a caspase-independent cell death program in human cancer cells. Oncogene 18, 2281–2290 (1999).

    CAS  PubMed  Google Scholar 

  13. Elliott, K., Ge, K., Du, W. & Prendergast, G.C. The c-Myc–interacting adaptor protein Bin1 activates a caspase-independent cell death program. Oncogene 19, 4669–4684 (2000).

    CAS  PubMed  Google Scholar 

  14. Tolkovsky, A.M., Xue, L., Fletcher, G.C. & Borutaite, V. Mitochondrial disappearance from cells: a clue to the role of autophagy in programmed cell death and disease? Biochimie 84, 233–240 (2002).

    CAS  PubMed  Google Scholar 

  15. Schulze-Osthoff, K. et al. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem. 267, 5317–5323 (1992).

    CAS  PubMed  Google Scholar 

  16. Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477–1485 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ha, H.C. & Snyder, S.H. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc. Natl. Acad. Sci. USA 96, 13978–13982 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Saeki, K. et al. Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ. 7, 1263–1269 (2000).

    CAS  PubMed  Google Scholar 

  19. Denecker, G. et al. Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. Cell Death Differ. 8, 829–840 (2001).

    CAS  PubMed  Google Scholar 

  20. Chung, S., Gumienny, T.L., Hengartner, M.O. & Driscoll, M. A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nat. Cell Biol. 2, 931–937 (2000).

    CAS  PubMed  Google Scholar 

  21. Hirt, U.A., Gantner, F. & Leist, M. Phagocytosis of nonapoptotic cells dying by caspase-independent mechanisms. J. Immunol. 164, 6520–6529 (2000).

    CAS  PubMed  Google Scholar 

  22. Nylandsted, J. et al. Eradication of glioblastoma, and breast and colon carcinoma xenografts by hsp70 depletion. Cancer Res. 62, 7139–7142 (2002).

    CAS  PubMed  Google Scholar 

  23. Ferri, K.R. & Kroemer, G. Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 3, E255–E263 (2001).

    CAS  PubMed  Google Scholar 

  24. Mathiasen, I.S. & Jäättelä, M. Triggering caspase-independent cell death to combat cancer. Trends Mol. Med. 8, 212–220 (2002).

    CAS  PubMed  Google Scholar 

  25. Von Ahsen, O., Waterhouse, N.J., Kuwana, T., Newmeyer, D.D. & Green, D.R. The 'harmless' release of cytochrome c. Cell Death Differ. 7, 1192–1199 (2000).

    CAS  PubMed  Google Scholar 

  26. Lipton, S.A. & Bossy-Wetzel, E. Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell 111, 147–150 (2002).

    CAS  PubMed  Google Scholar 

  27. Joza, N. et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549–554 (2001).

    CAS  PubMed  Google Scholar 

  28. Cregan, S.P. et al. Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J. Cell Biol. 158, 507–517 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu, S.W. et al. Mediation of poly(ADP-ribose) polymerase-1–dependent cell death by apoptosis-inducing factor. Science 297, 259–263 (2002).

    CAS  PubMed  Google Scholar 

  30. Joseph, B. et al. Mitochondrial dysfunction is an essential step for killing of non-small cell lung carcinomas resistant to conventional treatment. Oncogene 21, 65–77 (2002).

    CAS  PubMed  Google Scholar 

  31. Li, L.Y., Luo, X. & Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95–99 (2001).

    CAS  PubMed  Google Scholar 

  32. Suzuki, Y. et al. A serine protease, htra2, is released from the mitochondria and interacts with xiap, inducing cell death. Mol. Cell 8, 613–621 (2001).

    CAS  PubMed  Google Scholar 

  33. Wang, X., Yang, C., Chai, J., Shi, Y. & Xue, D. Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 298, 1587–1592 (2002).

    CAS  PubMed  Google Scholar 

  34. Elmore, S.P., Qian, T., Grissom, S.F. & Lemasters, J.J. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J. 15, 2286–2287 (2001).

    CAS  PubMed  Google Scholar 

  35. Xue, L., Fletcher, G.C. & Tolkovsky, A.M. Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr. Biol. 11, 361–365 (2001).

    CAS  PubMed  Google Scholar 

  36. Nylandsted, J. et al. Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc. Natl. Acad. Sci. USA 97, 7871–7876 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sperandio, S., de Belle, I. & Bredesen, D.E. An alternative, nonapoptotic form of programmed cell death. Proc. Natl. Acad. Sci. USA 97, 14376–14381 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mattson, M.P. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1, 120–129 (2000).

    CAS  PubMed  Google Scholar 

  39. Roberts, L.R. et al. Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes. Gastroenterology 113, 1714–1726 (1997).

    CAS  PubMed  Google Scholar 

  40. Roberg, K., Johansson, U. & Ollinger, K. Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic. Biol. Med. 27, 1228–1237 (1999).

    CAS  PubMed  Google Scholar 

  41. Roberg, K., Kagedal, K. & Ollinger, K. Microinjection of cathepsin d induces caspase-dependent apoptosis in fibroblasts. Am. J. Pathol. 161, 89–96 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Guicciardi, M.E. et al. Cathepsin B contributes to TNF-α–mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J. Clin. Invest 106, 1127–1137 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Foghsgaard, L. et al. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J. Cell Biol. 153, 999–1009 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Roberts, L.R., Adjei, P.N. & Gores, G.J. Cathepsins as effector proteases in hepatocyte apoptosis. Cell Biochem. Biophys. 30, 71–88 (1999).

    CAS  PubMed  Google Scholar 

  45. van Eijk, M. & de Groot, C. Germinal center B cell apoptosis requires both caspase and cathepsin activity. J. Immunol. 163, 2478–2482 (1999).

    CAS  PubMed  Google Scholar 

  46. Yuan, X.M. et al. Lysosomal destabilization in p53-induced apoptosis. Proc. Natl. Acad. Sci. USA 99, 6286–6291 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Katz, E. et al. B cell receptor-stimulated mitochondrial phospholipase A2 activation and resultant disruption of mitochondrial membrane potential correlate with the induction of apoptosis in WEHI-231 B cells. J. Immunol. 166, 137–147 (2001).

    CAS  PubMed  Google Scholar 

  48. Roberg, K. & Ollinger, K. Oxidative stress causes relocation of the lysosomal enzyme cathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes. Am. J. Pathol. 152, 1151–1156 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Roberg, K. Relocalization of cathepsin D and cytochrome c early in apoptosis revealed by immunoelectron microscopy. Lab. Invest. 81, 149–158 (2001).

    CAS  PubMed  Google Scholar 

  50. Kagedal, K., Zhao, M., Svensson, I. & Brunk, U.T. Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem. J. 359, 335–343 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Foghsgaard, L., Lademann, U., Wissing, D., Poulsen, B. & Jaattela, M. Cathepsin B mediates tumor necrosis factor-induced arachidonic acid release in tumor cells. J. Biol. Chem. 277, 39499–39506 (2002).

    CAS  PubMed  Google Scholar 

  52. Gobeil, S., Boucher, C.C., Nadeau, D. & Poirier, G.G. Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. Cell Death Differ. 8, 588–594 (2001).

    CAS  PubMed  Google Scholar 

  53. Vancompernolle, K. et al. Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett. 438, 150–158 (1998).

    CAS  PubMed  Google Scholar 

  54. Stoka, V. et al. Lysosomal protease pathways to apoptosis. Cleavage of Bid, not pro-caspases, is the most likely route. J. Biol. Chem. 276, 3149–3157 (2001).

    CAS  PubMed  Google Scholar 

  55. Schotte, P., Declercq, W., Van Huffel, S., Vandenabeele, P. & Beyaert, R. Non-specific effects of methyl ketone peptide inhibitors of caspases. FEBS Lett. 442, 117–121 (1999).

    CAS  PubMed  Google Scholar 

  56. Reggiori, F. & Klionsky, D.J. Autophagy in the eukaryotic cell. Eukaryot. Cell 1, 11–21 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cataldo, A.M., Hamilton, D.J. & Nixon, R.A. Lysosomal abnormalities in degenerating neurons link neuronal compromise to senile plaque development in Alzheimer disease. Brain Res. 640, 68–80 (1994).

    CAS  PubMed  Google Scholar 

  58. Anglade, P. et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol. 12, 25–31 (1997).

    CAS  PubMed  Google Scholar 

  59. Liang, X.H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    CAS  PubMed  Google Scholar 

  60. Xue, L., Fletcher, G.C. & Tolkovsky, A.M. Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol. Cell Neurosci 14, 180–198 (1999).

    CAS  PubMed  Google Scholar 

  61. Marino, G. et al. Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J. Biol. Chem. 278, 3671–3678 (2002).

    PubMed  Google Scholar 

  62. Deiss, L.P., Galinka, H., Berissi, H., Cohen, O. & Kimchi, A. Catepsin D protease mediates programmed cell death induced by interferon-γ, Fas/APO-1 and TNF-α. EMBO J. 15, 3861–3870 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Inbal, B., Bialik, S., Sabanay, I., Shani, G. & Kimchi, A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J. Cell Biol. 157, 455–468 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Caro, L.H., Plomp, P.J., Wolvetang, E.J., Kerkhof, C. & Meijer, A.J. 3-Methyladenine, an inhibitor of autophagy, has multiple effects on metabolism. Eur. J. Biochem 175, 325–329 (1988).

    CAS  PubMed  Google Scholar 

  65. Wang, K.K. Calpain and caspase: can you tell the difference? Trends. Neurosci. 23, 20–26 (2000).

    PubMed  Google Scholar 

  66. Mathiasen, I.S., Hansen, C.M., Foghsgaard, L. & Jäättelä, M. Sensitization to TNF-induced apoptosis by 1,25-dihydroxy vitamin D3 involves up-regulation of the TNF receptor 1 and cathepsin B. Int. J. Cancer 93, 224–231. (2001).

    CAS  PubMed  Google Scholar 

  67. Mathiasen, I.S. et al. Calcium and calpain as key mediators of apoptosis-like death induced by vitamin D compounds in breast cancer cells. J. Biol. Chem. 277, 30738–30745 (2002).

    CAS  PubMed  Google Scholar 

  68. Bao, J.J. et al. Reexpression of the tumor suppressor gene ARHI induces apoptosis in ovarian and breast cancer cells through a caspase-independent calpain-dependent pathway. Cancer Res. 62, 7264–7272 (2002).

    CAS  PubMed  Google Scholar 

  69. Bodmer, J.L., Schneider, P. & Tschopp, J. The molecular architecture of the TNF superfamily. Trends Biochem. Sci. 27, 19–26 (2002).

    CAS  PubMed  Google Scholar 

  70. Locksley, R.M., Killeen, N. & Lenardo, M.J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    CAS  PubMed  Google Scholar 

  71. Ashkenazi, A. & Dixit, V.M. Death receptors: signaling and modulation. Science 281, 1305–1308 (1998).

    CAS  PubMed  Google Scholar 

  72. Siegel, R.M. et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288, 2354–2357 (2000).

    CAS  PubMed  Google Scholar 

  73. Kischkel, F.C. et al. Cytotoxicity-dependent Apo-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kischkel, F.C. et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J. Biol. Chem. 276, 46639–46646 (2001).

    CAS  PubMed  Google Scholar 

  75. Salvesen, G.S. & Dixit, V.M. Caspase activation: the induced-proximity model. Proc. Natl. Acad. Sci. USA 96, 10964–10967 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Thome, M. & Tschopp, J. Regulation of lymphocyte proliferation and death by FLIP. Nat. Rev. Immunol. 1, 50–58 (2001).

    CAS  PubMed  Google Scholar 

  77. Kataoka, T. et al. The caspase-8 inhibitor FLIP promotes activation of NF-κB and ERK signaling pathways. Curr. Biol. 10, 640–648 (2000).

    CAS  PubMed  Google Scholar 

  78. Chen, G. & Goeddel, D.V. TNF-R1 signaling: a beautiful pathway. Science 296, 1634–1635 (2002).

    CAS  PubMed  Google Scholar 

  79. Sun, X., Yin, J., Starovasnik, M.A., Fairbrother, W.J. & Dixit, V.M. Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J. Biol. Chem. 277, 9505–9511 (2002).

    CAS  PubMed  Google Scholar 

  80. Yeh, W.C. et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954–1958 (1998).

    CAS  PubMed  Google Scholar 

  81. Zhang, J., Cado, D., Chen, A., Kabra, N.H. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296–300 (1998).

    CAS  PubMed  Google Scholar 

  82. Varfolomeev, E.E., Boldin, M.P., Goncharov, T.M. & Wallach, D. A potential mechanism of 'cross-talk' between the p55 tumor necrosis factor receptor and Fas/APO1: proteins binding to the death domains of the two receptors also bind to each other. J. Exp. Med. 183, 1271–1275 (1996).

    CAS  PubMed  Google Scholar 

  83. Vercammen, D., Vandenabeele, P., Beyaert, R., Declercq, W. & Fiers, W. Tumour necrosis factor-induced necrosis versus anti-Fas–induced apoptosis in L929 cells. Cytokine 9, 801–808 (1997).

    CAS  PubMed  Google Scholar 

  84. Luschen, S., Ussat, S., Scherer, G., Kabelitz, D. & Adam-Klages, S. Sensitization to death receptor cytotoxicity by inhibition of Fas-associated death domain protein (FADD)/caspase signaling. Requirement of cell cycle progression. J. Biol. Chem. 275, 24670–24678 (2000).

    CAS  PubMed  Google Scholar 

  85. Khwaja, A. & Tatton, L. Resistance to the cytotoxic effects of tumor necrosis factor alpha can be overcome by inhibition of a FADD/caspase-dependent signaling pathway. J. Biol. Chem. 274, 36817–36823 (1999).

    CAS  PubMed  Google Scholar 

  86. Vonarbourg, C. et al. Differential sensitivity of Jurkat and primary T cells to caspase-independent cell death triggered upon Fas stimulation. Eur J. Immunol. 32, 2376–2384 (2002).

    CAS  PubMed  Google Scholar 

  87. Kawahara, A., Ohsawa, Y., Matsumura, H., Uchiyama, Y. & Nagata, S. Caspase-independent cell killing by Fas-associated protein with death domain. J. Cell Biol. 143, 1353–1360 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kalai, M., Van Loo, G., Declercq, W. & Vandenabeele, P. Disruption of HSP90 function reverts TNF-induced necrosis to apoptosis. J. Biol. Chem. 278, 5622–5629 (2003).

    PubMed  Google Scholar 

  89. Kelliher, M.A. et al. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8, 297–303 (1998).

    CAS  PubMed  Google Scholar 

  90. Holler, N. et al. Development of improved soluble inhibitors of FasL and CD40L based on oligomerized receptors. J. Immunol. Methods 237, 159–173 (2000).

    CAS  PubMed  Google Scholar 

  91. Goossens, V. et al. Redox regulation of TNF signaling. Biofactors 10, 145–156 (1999).

    CAS  PubMed  Google Scholar 

  92. Kudo, I. & Murakami, M. Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat. 68–69, 3–58 (2002).

    PubMed  Google Scholar 

  93. Lin, L.L. et al. cPLA2 is phosphorylated and activated by MAP kinase. Cell 72, 269–278 (1993).

    CAS  PubMed  Google Scholar 

  94. Waterman, W.H., Molski, T.F., Huang, C.K., Adams, J.L. & Sha'afi, R.I. Tumour necrosis factor-α-induced phosphorylation and activation of cytosolic phospholipase A2 are abrogated by an inhibitor of the p38 mitogen-activated protein kinase cascade in human neutrophils. Biochem. J. 319, 17–20 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kolesnick, R.N. & Kronke, M. Regulation of ceramide production and apoptosis. Annu. Rev. Physiol. 60, 643–665 (1998).

    CAS  PubMed  Google Scholar 

  96. Kronke, M. & Adam-Klages, S. Role of caspases in TNF-mediated regulation of cPLA2 . FEBS Lett. 531, 18–22 (2002).

    CAS  PubMed  Google Scholar 

  97. Uzzo, R.G. et al. Inhibition of NFκB induces caspase-independent cell death in human T lymphocytes. Biochem. Biophys. Res. Commun. 287, 895–899 (2001).

    CAS  PubMed  Google Scholar 

  98. Hildeman, D.A. et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10, 735–744 (1999).

    CAS  PubMed  Google Scholar 

  99. Bidere, N. & Senik, A. Caspase-independent apoptotic pathways in T lymphocytes: a minireview. Apoptosis 6, 371–375 (2001).

    CAS  PubMed  Google Scholar 

  100. Pettersen, R.D., Bernard, G., Olafsen, M.K., Pourtein, M. & Lie, S.O. CD99 signals caspase-independent T cell death. J. Immunol. 166, 4931–4942 (2001).

    CAS  PubMed  Google Scholar 

  101. Doerfler, P., Forbush, K.A. & Perlmutter, R.M. Caspase enzyme activity is not essential for apoptosis during thymocyte development. J. Immunol. 164, 4071–4079 (2000).

    CAS  PubMed  Google Scholar 

  102. Sayers, T.J. et al. T cell lysis of murine renal cancer: multiple signaling pathways for cell death via Fas. J. Leukoc Biol. 68, 81–86 (2000).

    CAS  PubMed  Google Scholar 

  103. O'Connor, L. et al. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 17, 384–395 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Brunner, T. et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373, 441–444 (1995).

    CAS  PubMed  Google Scholar 

  105. Ju, S.T. et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373, 444–448 (1995).

    CAS  PubMed  Google Scholar 

  106. Dhein, J., Walczak, H., Bäumler, C., Debatin, K.-M. & Krammer, P.H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373, 438–441 (1995).

    CAS  PubMed  Google Scholar 

  107. Zheng, L.X. et al. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377, 348–351 (1995).

    CAS  PubMed  Google Scholar 

  108. Scaffidi, C., Kirchhoff, S., Krammer, P.H. & Peter, M.E. Apoptosis signaling in lymphocytes. Curr. Opin. Immunol. 11, 277–285 (1999).

    CAS  PubMed  Google Scholar 

  109. Siegel, R.M., Chan, F.K., Chun, H.J. & Lenardo, M.J. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat. Immunol. 1, 469–474 (2000).

    CAS  PubMed  Google Scholar 

  110. Weih, F., Ryseck, R.P., Chen, L. & Bravo, R. Apoptosis of nur77/N10-transgenic thymocytes involves the Fas/Fas ligand pathway. Proc. Natl. Acad. Sci. USA 93, 5533–5538 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Mittelstadt, P.R. & Ashwell, J.D. Cyclosporin A-sensitive transcription factor Egr-3 regulates Fas ligand expression. Mol. Cell. Biol. 18, 3744–3751 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Nagata, S. & Suda, T. Fas and Fas ligand: lpr and gld mutations. Immunol. Today 16, 39–43 (1995).

    CAS  PubMed  Google Scholar 

  113. Refaeli, Y., Van Parijs, L., London, C.A., Tschopp, J. & Abbas, A.K. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 8, 615–623 (1998).

    CAS  PubMed  Google Scholar 

  114. Krueger, A., Baumann, S., Krammer, P.H. & Kirchhoff, S. FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol. Cell. Biol. 21, 8247–8254 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Berndt, C., Mopps, B., Angermuller, S., Gierschik, P. & Krammer, P.H. CXCR4 and CD4 mediate a rapid CD95-independent cell death in CD4+ T cells. Proc. Natl. Acad. Sci. USA 95, 12556–12561 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Davidson, W.F., Haudenschild, C., Kwon, J. & Williams, M.S. T cell receptor ligation triggers novel nonapoptotic cell death pathways that are Fas-independent or Fas-dependent. J. Immunol. 169, 6218–6230 (2002).

    CAS  PubMed  Google Scholar 

  117. Smith, K.G., Strasser, A. & Vaux, D.L. CrmA expression in T lymphocytes of transgenic mice inhibits CD95 (Fas/APO-1)-transduced apoptosis, but does not cause lymphadenopathy or autoimmune disease. EMBO J. 15, 5167–5176 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Van Parijs, L., Peterson, D.A. & Abbas, A.K. The Fas/Fas ligand pathway and Bcl-2 regulate T cell responses to model self and foreign antigens. Immunity 8, 265–274 (1998).

    CAS  PubMed  Google Scholar 

  119. Strasser, A., Harris, A.W., Huang, D.C.S., Krammer, P.H. & Cory, S. Bcl-2 and Fas/Apo-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J. 14, 6136–6147 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Scott, D.E., Kisch, W.J. & Steinberg, A.D. Studies of T cell deletion and T cell anergy following in vivo administration of SEB to normal and lupus-prone mice. J. Immunol. 150, 664–672 (1993).

    CAS  PubMed  Google Scholar 

  121. Hildeman, D.A. et al. Activated T cell death in vivo mediated by proapoptotic bcl-2 family member bim. Immunity 16, 759–767 (2002).

    CAS  PubMed  Google Scholar 

  122. Ferraro-Peyret, C., Quemeneur, L., Flacher, M., Revillard, J.P. & Genestier, L. Caspase-independent phosphatidylserine exposure during apoptosis of primary T lymphocytes. J. Immunol. 169, 4805–4810 (2002).

    PubMed  Google Scholar 

  123. Kennedy, N.J., Kataoka, T., Tschopp, J. & Budd, R.C. Caspase activation is required for T cell proliferation. J. Exp. Med. 190, 1891–1896 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Alam, A., Cohen, L.Y., Aouad, S. & Sekaly, R.P. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J. Exp. Med. 190, 1879–1890 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chun, H.J. et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419, 395–399 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues for discussions, M. Leist and H. Everett for help with the text and figures, and the Danish Cancer Society and the Swiss National Science Foundation for financial support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäättelä, M., Tschopp, J. Caspase-independent cell death in T lymphocytes. Nat Immunol 4, 416–423 (2003). https://doi.org/10.1038/ni0503-416

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0503-416

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing