Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail–truncated CD1d

Abstract

For members of the CD1 family of β2-microglobulin–associated lipid-presenting molecules, tyrosine-based motifs in the cytoplasmic tail and invariant chain (Ii) govern glycoprotein trafficking through endosomal compartments. Little is known about the intracellular pathways of CD1 trafficking and antigen presentation. However, in vitro studies with cells transfected with mutant CD1 that had a truncated cytoplasmic tail have suggested a role for these tyrosine motifs in some, but not all, antigenic systems. By introducing a deletion of the tyrosine motif into the germ line, and through homologous recombination in embryonic stem cells, we now describe knock-in mice with the CD1d cytoplasmic tail deleted. Despite adequate surface CD1d expression and the presence of Ii, these mutant mice showed multiple and selective abnormalities in intracellular trafficking, antigen presentation and T cell development, demonstrating the critical functions of the CD1d cytoplasmic tail motif in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD1-TD knock-in mouse.
Figure 2: Surface expression of CD1-TD.
Figure 3: Altered trafficking of CD1-TD.
Figure 4: Differential recognition of CD1-TD by representatives of Vα14 and non-Vα14 CD1d-autoreactive hybridomas.
Figure 5: Impaired presentation of αGalCer by CD1-TD cells.
Figure 6: Decreased thymic selection of Vα14 NKT cells in CD1-TD mice.

Similar content being viewed by others

References

  1. Kasahara, M., Nakaya, J., Satta, Y. & Takahata, N. Chromosomal duplication and the emergence of the adaptive immune system. Trends Genet. 13, 90–92 (1997).

    Article  CAS  Google Scholar 

  2. Calabi, F., Jarvis, J. M., Martin, L. H. & Milstein, C. Two classes of CD1 genes. Eur. J. Immunol. 19, 285–292 (1989).

    Article  CAS  Google Scholar 

  3. Porcelli, S. A. & Modlin, R. L. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu. Rev. Immunol. 17, 297–329 (1999).

    Article  CAS  Google Scholar 

  4. Park, S. H. & Bendelac, A. CD1-restricted T-cell responses and microbial infection. Nature 406, 788–792 (2000).

    Article  CAS  Google Scholar 

  5. Sugita, M. et al. Cytoplasmic tail-dependent localization of CD1b antigen-presenting molecules to MIICs. Science 273, 349–352 (1996).

    Article  CAS  Google Scholar 

  6. Jackman, R. M. et al. The tyrosine-containing cytoplasmic tail of CD1b is essential for its efficient presentation of bacterial lipid antigens. Immunity 8, 341–351 (1998).

    Article  CAS  Google Scholar 

  7. Brossay, L. et al. Mouse CD1-autoreactive T cells have diverse patterns of reactivity to CD1+ targets. J. Immunol. 160, 3681–3688 (1998).

    CAS  PubMed  Google Scholar 

  8. Sugita, M. et al. Separate pathways for antigen presentation by CD1 molecules. Immunity 11, 743–752 (1999).

    Article  CAS  Google Scholar 

  9. Chiu, Y. H. et al. Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J. Exp. Med. 189, 103–110 (1999).

    Article  CAS  Google Scholar 

  10. Briken, V., Jackman, R. M., Watts, G. F., Rogers, R. A. & Porcelli, S. A. Human CD1b and CD1c isoforms survey different intracellular compartments for the presentation of microbial lipid antigens. J. Exp. Med. 192, 281–288 (2000).

    Article  CAS  Google Scholar 

  11. Schaible, U. E., Hagens, K., Fischer, K., Collins, H. L. & Kaufmann, S. H. Intersection of group I CD1 molecules and mycobacteria in different intracellular compartments of dendritic cells. J. Immunol. 164, 4843–4852 (2000).

    Article  CAS  Google Scholar 

  12. Porcelli, S., Morita, C. T. & Brenner, M. B. CD1b restricts the response of human CD4-8- T lymphocytes to a microbial antigen. Nature 360, 593–597 (1992).

    Article  CAS  Google Scholar 

  13. Sieling, P. A. et al. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269, 227–230 (1995).

    Article  CAS  Google Scholar 

  14. Shamshiev, A. et al. The αβ T cell response to self-glycolipids shows a novel mechanism of CD1b loading and a requirement for complex oligosaccharides. Immunity 13, 255–264 (2000).

    Article  CAS  Google Scholar 

  15. Prigozy, T. I. et al. Glycolipid antigen processing for presentation by CD1d molecules. Science 291, 664–667 (2001).

    Article  CAS  Google Scholar 

  16. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  Google Scholar 

  17. Spada, F. M., Koezuka, Y. & Porcelli, S. A. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J. Exp. Med. 188, 1529–1534 (1998).

    Article  CAS  Google Scholar 

  18. Burdin, N. et al. Selective ability of mouse CD1 to present glycolipids: α-galactosylceramide specifically stimulates Vα14+ NK T lymphocytes. J. Immunol. 161, 3271–3281 (1998).

    CAS  PubMed  Google Scholar 

  19. Jayawardena-Wolf, J., Benlagha, K., Chiu, Y.-H., Mehr, R. & Bendelac, A. CD1d endosomal trafficking is independently regulated by an intrinsic CD1d-encoded tyrosine motif and by the invariant chain. Immunity 15, (in the press, 2001).

  20. Park, S.-H., Roark, J. H. & Bendelac, A. Tissue specific recognition of mouse CD1 molecules. J. Immunol. 160, 3128–3134 (1998).

    CAS  PubMed  Google Scholar 

  21. Chen, Y. H. et al. Expression of CD1d2 on thymocytes is not sufficient for the development of NK T cells in CD1d1-deficient mice. J. Immunol. 162, 4560–4566 (1999).

    CAS  PubMed  Google Scholar 

  22. Park, S. H. et al. Selection and expansion of CD8α/α(1) T cell receptor α/β(1) intestinal intraepithelial lymphocytes in the absence of both classical major histocompatibility complex class I and nonclassical cd1 Molecules. J. Exp. Med. 190, 885–890 (1999).

    Article  CAS  Google Scholar 

  23. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen specific T cells using fluorescent CD1d tetramers. J. Exp. Med 191, 1895–1903 (2000).

    Article  CAS  Google Scholar 

  24. Park, S. H. et al. The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J. Exp. Med. 193, 893–904 (2001).

    Article  CAS  Google Scholar 

  25. Bendelac, A., Rivera, M. N., Park, S.-H. & Roark, J. H. Mouse CD1-specific NK1 T cells. Development, specificity, and function. Ann. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  Google Scholar 

  26. Bix, M., Coles, M. & Raulet, D. Positive selection of Vβ8+ CD48 thymocytes by class I molecules expressed by hematopoietic cells. J. Exp. Med. 178, 901–908 (1993).

    Article  CAS  Google Scholar 

  27. Bendelac, A., Killeen, N., Littman, D. & Schwartz, R. H. A subset of CD4+ thymocytes selected by MHC class I molecules. Science 263, 1774–1778 (1994).

    Article  CAS  Google Scholar 

  28. Ohteki, T. & MacDonald, H. R. Major histocompatibility complex class I related molecules control the development of CD4+8 and CD48 subsets of natural killer 1.1+ T cell receptor-α/β+ cells in the liver of mice. J. Exp. Med. 180, 699–704 (1994).

    Article  CAS  Google Scholar 

  29. Bendelac, A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182, 2091–2096 (1995).

    Article  CAS  Google Scholar 

  30. Coles, M. C. & Raulet, D. H. NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. J. Immunol. 164, 2412–2418 (2000).

    Article  CAS  Google Scholar 

  31. Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of MHC class I-specific CD4+ and CD48 T cells in mice and humans. J. Exp. Med. 180, 1097–1106 (1994).

    Article  CAS  Google Scholar 

  32. Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes. Science 268, 863–865 (1995).

    Article  CAS  Google Scholar 

  33. Roark, J. H. et al. CD1.1 expression by mouse antigen presenting cells and marginal zone B cells. J. Immunol. 160, 3121–3127 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Jabri, G. Waters and M. Weigert for advice and discussions and J. Goodhouse for help with confocal microscopy. Supported by grants from the Korea Research Foundation (grant 2001-015-DS0063 to S.-H. P.), ACS and NIH (to A. B.) as well as the Cancer Research Institute (Y.-H. C.), the Leukemia and Lymphoma Society of America (K. B.) and the Human Frontier Science Program (C. F.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Se-Ho Park or Albert Bendelac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, YH., Park, SH., Benlagha, K. et al. Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail–truncated CD1d. Nat Immunol 3, 55–60 (2002). https://doi.org/10.1038/ni740

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni740

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing