Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The impact of host genetic variation on infection with HIV-1

Abstract

The outcome after infection with the human immunodeficiency virus type 1 (HIV-1) is a complex phenotype determined by interactions among the pathogen, the human host and the surrounding environment. An impact of host genetic variation on HIV-1 susceptibility was identified early in the pandemic, with a major role attributed to the genes encoding class I human leukocyte antigens (HLA) and the chemokine receptor CCR5. Studies using genome-wide data sets have underscored the strength of these associations relative to variants located throughout the rest of the genome. However, the extent to which additional polymorphisms influence HIV-1 disease progression, and how much of the variability in outcome can be attributed to host genetics, remain largely unclear. Here we discuss findings concerning the functional impact of associated variants, outline methods for quantifying the host genetic component and examine how available genome-wide data sets may be leveraged to discover gene variants that affect the outcome of HIV-1 infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Opportunities and obstacles for human genetic studies of HIV-1 outcomes.
Figure 2: Approaches to supporting a direct functional impact of HLA-C expression on HIV-1 disease outcome.
Figure 3: HIV-1–dependency genes identified by genome-wide short interfering RNA (siRNA) screens are relatively conserved.

Similar content being viewed by others

References

  1. Horton, R.E., McLaren, P.J., Fowke, K., Kimani, J. & Ball, T.B. Cohorts for the study of HIV-1-exposed but uninfected individuals: benefits and limitations. J. Infect. Dis. 202 (suppl. 3), S377–S381 (2010).

    PubMed  Google Scholar 

  2. An, P. & Winkler, C.A. Host genes associated with HIV/AIDS: advances in gene discovery. Trends Genet. 26, 119–131 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lane, J. et al. A genome-wide association study of resistance to HIV infection in highly exposed uninfected individuals with hemophilia A. Hum. Mol. Genet. 22, 1903–1910 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. McLaren, P.J. et al. Association study of common genetic variants and HIV-1 acquisition in 6,300 infected cases and 7,200 controls. PLoS Pathog. 9, e1003515 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gurdasani, D. et al. A systematic review of definitions of extreme phenotypes of HIV control and progression. AIDS 28, 149–162 (2014).

    PubMed  Google Scholar 

  6. Kaslow, R.A. et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat. Med. 2, 405–411 (1996).

    CAS  PubMed  Google Scholar 

  7. Carrington, M. et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283, 1748–1752 (1999).

    CAS  PubMed  Google Scholar 

  8. Gao, X. et al. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. N. Engl. J. Med. 344, 1668–1675 (2001).

    CAS  PubMed  Google Scholar 

  9. Keet, I.P. et al. Consistent associations of HLA class I and II and transporter gene products with progression of human immunodeficiency virus type 1 infection in homosexual men. J. Infect. Dis. 180, 299–309 (1999).

    CAS  PubMed  Google Scholar 

  10. Martin, M.P. & Carrington, M. Immunogenetics of HIV disease. Immunol. Rev. 254, 245–264 (2013).

    PubMed  PubMed Central  Google Scholar 

  11. Fellay, J. et al. Common genetic variation and the control of HIV-1 in humans. PLoS Genet. 5, e1000791 (2009).

    PubMed  PubMed Central  Google Scholar 

  12. Pereyra, F. et al. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 330, 1551–1557 (2010).

    PubMed  PubMed Central  Google Scholar 

  13. Carrington, M., Bashirova, A.A. & McLaren, P.J. On stand by: host genetics of HIV control. AIDS 27, 2831–2839 (2013).

    PubMed  Google Scholar 

  14. Pyo, C.W. et al. Recombinant structures expand and contract inter and intragenic diversification at the KIR locus. BMC Genomics 14, 89 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fellay, J. et al. A whole-genome association study of major determinants for host control of HIV-1. Science 317, 944–947 (2007). This is the first genome-wide association study on an infectious disease trait. This study demonstrates that variation in the MHC region is the primary host genetic influence on HIV outcome in an unbiased, genome-wide screen.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Migueles, S.A. et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long-term nonprogressors. Proc. Natl. Acad. Sci. USA 97, 2709–2714 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE 8, e64683 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dunstan, S.J. et al. Variation at HLA-DRB1 is associated with resistance to enteric fever. Nat. Genet. 46, 1333–1336 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Patsopoulos, N.A. et al. Fine-mapping the genetic association of the major histocompatibility complex in multiple sclerosis: HLA and non-HLA effects. PLoS Genet. 9, e1003926 (2013).

    PubMed  PubMed Central  Google Scholar 

  20. Okada, Y. et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am. J. Hum. Genet. 95, 162–172 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Stranger, B.E. et al. Population genomics of human gene expression. Nat. Genet. 39, 1217–1224 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Thomas, R. et al. HLA-C cell surface expression and control of HIV/AIDS correlate with a variant upstream of HLA-C. Nat. Genet. 41, 1290–1294 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaufman, J. & Salomonsen, J. The “minimal essential MHC” revisited: both peptide-binding and cell surface expression level of MHC molecules are polymorphisms selected by pathogens in chickens. Hereditas 127, 67–73 (1997).

    CAS  PubMed  Google Scholar 

  25. Koch, M. et al. Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. Immunity 27, 885–899 (2007).

    CAS  PubMed  Google Scholar 

  26. Corrah, T.W. et al. Reappraisal of the relationship between the HIV-1-protective single-nucleotide polymorphism 35 kilobases upstream of the HLA-C gene and surface HLA-C expression. J. Virol. 85, 3367–3374 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pulit, S.L., Voight, B.F. & de Bakker, P.I. Multiethnic genetic association studies improve power for locus discovery. PLoS ONE 5, e12600 (2010).

    PubMed  PubMed Central  Google Scholar 

  28. Apps, R. et al. Influence of HLA-C expression level on HIV control. Science 340, 87–91 (2013). The authors determine the cell surface expression dynamics of all common classical HLA-C allotypes . Accounting for linkage disequilibrium with known allelic effects at HLA-A and HLA-B, they demonstrate an independent impact of HLA-C expression level on HIV control.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kulkarni, S. et al. Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature 472, 495–498 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kulkarni, S. et al. Genetic interplay between HLA-C and MIR148A in HIV control and Crohn disease. Proc. Natl. Acad. Sci. USA 110, 20705–20710 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Blais, M.E. et al. High frequency of HIV mutations associated with HLA-C suggests enhanced HLA-C-restricted CTL selective pressure associated with an AIDS-protective polymorphism. J. Immunol. 188, 4663–4670 (2012).

    CAS  PubMed  Google Scholar 

  32. Kiepiela, P. et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432, 769–775 (2004).

    CAS  PubMed  Google Scholar 

  33. Kiepiela, P. et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat. Med. 13, 46–53 (2007).

    CAS  PubMed  Google Scholar 

  34. Petersdorf, E.W. et al. HLA-C expression levels define permissible mismatches in hematopoietic cell transplantation. Blood 124, 3996–4003 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Thomas, R. et al. A novel variant marking HLA-DP expression levels predicts recovery from hepatitis B virus infection. J. Virol. 86, 6979–6985 (2012).

    PubMed  PubMed Central  Google Scholar 

  36. Duggal, P. et al. Genome-wide association study of spontaneous resolution of hepatitis C virus infection: data from multiple cohorts. Ann. Intern. Med. 158, 235–245 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. Wissemann, W.T. et al. Association of Parkinson disease with structural and regulatory variants in the HLA region. Am. J. Hum. Genet. 93, 984–993 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Reits, E.A. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 203, 1259–1271 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Faroudi, M. et al. Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold. Proc. Natl. Acad. Sci. USA 100, 14145–14150 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Stahl, E.A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 44, 483–489 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010). Missing heritabililty is the proportion of trait variability known to be attributable to genetic effects that has not been explained by GWAS. Using human height as a model, the authors describe a method for quantifying the heritability explained by all common SNPs and show that this accounts for a large fraction of the missing heritability.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet. 95, 535–552 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Carlson, J.M. et al. HIV transmission. Selection bias at the heterosexual HIV-1 transmission bottleneck. Science 345, 1254031 doi:10.1126/science.1254031 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Fraser, C. et al. Virulence and pathogenesis of HIV-1 infection: an evolutionary perspective. Science 343, 1243727 doi:10.1126/science.1243727 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Fraser, C., Hollingsworth, T.D., Chapman, R., de Wolf, F. & Hanage, W.P. Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. Proc. Natl. Acad. Sci. USA 104, 17441–17446 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. van Dorp, C.H., van Boven, M. & de Boer, R.J. Immuno-epidemiological modeling of HIV-1 predicts high heritability of the set-point virus load, while selection for CTL escape dominates virulence evolution. PLoS Comput. Biol. 10, e1003899 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Bartha, I. et al. A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control. Elife 2, e01123 (2013). In a combined analysis of host and pathogen genetics, the authors use HIV sequence diversity as phenotype in multiple GWAS. The authors demonstrated that using sites of viral escape as an intermediate phenotype was more powerful than using clinical markers of disease progression to detect HLA associations.

    PubMed  PubMed Central  Google Scholar 

  48. Mackelprang, R.D. et al. Host genetic and viral determinants of HIV-1 RNA set-point among HIV-1 seroconverters from sub-Saharan Africa. J. Virol. 89, 2104–2111 (2015).

    PubMed  Google Scholar 

  49. Frater, A.J. et al. Effective T-cell responses select human immunodeficiency virus mutants and slow disease progression. J. Virol. 81, 6742–6751 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Leslie, A.J. et al. HIV evolution: CTL escape mutation and reversion after transmission. Nat. Med. 10, 282–289 (2004).

    CAS  PubMed  Google Scholar 

  51. Martinez-Picado, J. et al. Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J. Virol. 80, 3617–3623 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schneidewind, A. et al. Escape from the dominant HLA-B27-restricted cytotoxic T-lymphocyte response in Gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication. J. Virol. 81, 12382–12393 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kawashima, Y. et al. Adaptation of HIV-1 to human leukocyte antigen class I. Nature 458, 641–645 (2009). In a study of HIV diversity in multiple geographic regions, the authors show a correlation between frequency of viral escape mutations and the restricting HLA alleles. This adaptation resulted in the loss of protective effect of HLA-B*51 in a Japanese sample over time.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cotton, L.A. et al. Genotypic and functional impact of HIV-1 adaptation to its host population during the North American epidemic. PLoS Genet. 10, e1004295 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Payne, R. et al. Impact of HLA-driven HIV adaptation on virulence in populations of high HIV seroprevalence. Proc. Natl. Acad. Sci. USA 111, E5393–E5400 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Herbeck, J.T. et al. Is the virulence of HIV changing? A meta-analysis of trends in prognostic markers of HIV disease progression and transmission. AIDS 26, 193–205 (2012).

    PubMed  Google Scholar 

  57. Regoes, R.R. et al. Disentangling human tolerance and resistance against HIV. PLoS Biol. 12, e1001951 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Abecasis, G.R. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    PubMed  Google Scholar 

  59. Jägger, S. et al. Global landscape of HIV–human protein complexes. Nature 481, 365–370 (2012).

    Google Scholar 

  60. Zhu, J. et al. Comprehensive identification of host modulators of HIV-1 replication using multiple orthologous RNAi reagents. Cell Reports 9, 752–766 (2014).

    CAS  PubMed  Google Scholar 

  61. Akashi, H., Osada, N. & Ohta, T. Weak selection and protein evolution. Genetics 192, 15–31 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Farzadegan, H. et al. Sex differences in HIV-1 viral load and progression to AIDS. Lancet 352, 1510–1514 (1998).

    CAS  PubMed  Google Scholar 

  63. Sterling, T.R. et al. Sex differences in longitudinal human immunodeficiency virus type 1 RNA levels among seroconverters. J. Infect. Dis. 180, 666–672 (1999).

    CAS  PubMed  Google Scholar 

  64. Konttinen, Y.T., Hanninen, A. & Fuellen, G. Plasmacytoid dendritic cells, Janus-faced sentinels: progesterone, guilty or innocent? Immunotherapy 1, 929–931 (2009).

    CAS  PubMed  Google Scholar 

  65. Kiezun, A. et al. Exome sequencing and the genetic basis of complex traits. Nat. Genet. 44, 623–630 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. MacArthur, D.G. et al. Guidelines for investigating causality of sequence variants in human disease. Nature 508, 469–476 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chang, J. et al. Polymorphisms in interferon regulatory factor 7 reduce interferon-alpha responses of plasmacytoid dendritic cells to HIV-1. AIDS 25, 715–717 (2011).

    CAS  PubMed  Google Scholar 

  68. Lodi, S. et al. Immunovirologic control 24 months after interruption of antiretroviral therapy initiated close to HIV seroconversion. Arch. Intern. Med. 172, 1252–1255 (2012).

    PubMed  Google Scholar 

  69. Sáez-Cirión, A. et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 9, e1003211 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. Ge, D. et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461, 399–401 (2009).

    CAS  PubMed  Google Scholar 

  71. Prentice, H.A. et al. HLA class I, KIR, and genome-wide SNP diversity in the RV144 Thai phase 3 HIV vaccine clinical trial. Immunogenetics 66, 299–310 (2014).

    CAS  PubMed  Google Scholar 

  72. Deeks, S.G. & Walker, B.D. Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 27, 406–416 (2007).

    CAS  PubMed  Google Scholar 

  73. Bartha, I., McLaren, P.J., Ciuffi, A., Fellay, J. & Telenti, A. GuavaH: a compendium of host genomic data in HIV biology and disease. Retrovirology 11, 6 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Bashirova and I. Bartha for helpful suggestions. This project was funded in whole or in part with federal funds from the Frederick National Laboratory for Cancer Research, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US Government. This research was supported in part by the Intramural Research Program of the National Institutes of Health, Frederick National Laboratory, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul J McLaren or Mary Carrington.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLaren, P., Carrington, M. The impact of host genetic variation on infection with HIV-1. Nat Immunol 16, 577–583 (2015). https://doi.org/10.1038/ni.3147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing