Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation

Abstract

Sphingosine 1-phosphate (S1P) signaling regulates lymphocyte egress from lymphoid organs into systemic circulation. The sphingosine phosphate receptor 1 (S1P1) agonist FTY-720 (Gilenya) arrests immune trafficking and prevents multiple sclerosis (MS) relapses. However, alternative mechanisms of S1P-S1P1 signaling have been reported. Phosphoproteomic analysis of MS brain lesions revealed S1P1 phosphorylation on S351, a residue crucial for receptor internalization. Mutant mice harboring an S1pr1 gene encoding phosphorylation-deficient receptors (S1P1(S5A)) developed severe experimental autoimmune encephalomyelitis (EAE) due to autoimmunity mediated by interleukin 17 (IL-17)–producing helper T cells (TH17 cells) in the peripheral immune and nervous system. S1P1 directly activated the Jak-STAT3 signal-transduction pathway via IL-6. Impaired S1P1 phosphorylation enhances TH17 polarization and exacerbates autoimmune neuroinflammation. These mechanisms may be pathogenic in MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: S1P1 phosphorylation in active MS brain lesions.
Figure 2: S1P1(S5A) mice developed severe EAE.
Figure 3: Enhanced STAT3-mediated TH17 polarization in S1P1(S5A) EAE mice.
Figure 4: S1P-S1P1 signaling activates STAT3 phosphorylation.
Figure 5: IL-6 is crucial for S1P1-mediated STAT3 activation.

Similar content being viewed by others

References

  1. Baumruker, T., Billich, A. & Brinkmann, V. FTY720, an immunomodulatory sphingolipid mimetic: translation of a novel mechanism into clinical benefit in multiple sclerosis. Expert Opin. Investig. Drugs 16, 283–289 (2007).

    CAS  PubMed  Google Scholar 

  2. Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    CAS  PubMed  Google Scholar 

  3. Cohen, J.A. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415 (2010).

    CAS  PubMed  Google Scholar 

  4. Devonshire, V. et al. Relapse and disability outcomes in patients with multiple sclerosis treated with fingolimod: subgroup analyses of the double-blind, randomised, placebo-controlled FREEDOMS study. Lancet Neurol. 11, 420–428 (2012).

    CAS  PubMed  Google Scholar 

  5. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    CAS  PubMed  Google Scholar 

  6. Chi, H. & Flavell, R.A. Cutting edge: regulation of T cell trafficking and primary immune responses by sphingosine 1-phosphate receptor 1. J. Immunol. 174, 2485–2488 (2005).

    CAS  PubMed  Google Scholar 

  7. Rosen, H. & Goetzl, E.J. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat. Rev. Immunol. 5, 560–570 (2005).

    CAS  Google Scholar 

  8. Cyster, J.G. & Schwab, S.R. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30, 69–94 (2012).

    CAS  PubMed  Google Scholar 

  9. Zhi, L. et al. FTY720 blocks egress of T cells in part by abrogation of their adhesion on the lymph node sinus. J. Immunol. 187, 2244–2251 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rivera, J., Proia, R.L. & Olivera, A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat. Rev. Immunol. 8, 753–763 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Allende, M.L. et al. Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J. Biol. Chem. 279, 52487–52492 (2004).

    CAS  PubMed  Google Scholar 

  12. Halin, C. et al. The S1P-analog FTY720 differentially modulates T-cell homing via HEV: T-cell-expressed S1P1 amplifies integrin activation in peripheral lymph nodes but not in Peyer patches. Blood 106, 1314–1322 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Oo, M.L. et al. Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J. Biol. Chem. 282, 9082–9089 (2007).

    CAS  PubMed  Google Scholar 

  14. Chun, J. & Hartung, H.P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol. 33, 91–101 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ingwersen, J. et al. Fingolimod in multiple sclerosis: mechanisms of action and clinical efficacy. Clin. Immunol. 142, 15–24 (2012).

    CAS  PubMed  Google Scholar 

  16. Cohen, J.A. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415 (2010).

    CAS  PubMed  Google Scholar 

  17. Waubant, E. Emerging therapies for MS. Rev. Neurol. (Paris) 163, 688–696 (2007).

    CAS  Google Scholar 

  18. Kieseier, B.C., Wiendl, H., Hemmer, B. & Hartung, H.P. Treatment and treatment trials in multiple sclerosis. Curr. Opin. Neurol. 20, 286–293 (2007).

    CAS  PubMed  Google Scholar 

  19. Jander, S., Turowski, B., Kieseier, B.C. & Hartung, H.P. Emerging tumefactive multiple sclerosis after switching therapy from natalizumab to fingolimod. Mult. Scler. 18, 1650–1652 (2012).

    PubMed  Google Scholar 

  20. Bourdette, D. & Gilden, D. Fingolimod and multiple sclerosis: four cautionary tales. Neurology 79, 1942–1943 (2012).

    PubMed  Google Scholar 

  21. Visser, F., Wattjes, M.P., Pouwels, P.J., Linssen, W.H. & van Oosten, B.W. Tumefactive multiple sclerosis lesions under fingolimod treatment. Neurology 79, 2000–2003 (2012).

    PubMed  Google Scholar 

  22. Liu, C.H. et al. Ligand-induced trafficking of the sphingosine-1-phosphate receptor EDG-1. Mol. Biol. Cell 10, 1179–1190 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kohno, T. & Igarashi, Y. N-glycosylation of sphingosine 1-phosphate receptor, Edg-1, and its role on receptor internalization through membrane microdomain. Tanpakushitsu Kakusan Koso 47, 503–508 (2002).

    CAS  PubMed  Google Scholar 

  24. Watterson, K.R. et al. Dual regulation of EDG1/S1P1 receptor phosphorylation and internalization by protein kinase C and G-protein-coupled receptor kinase 2. J. Biol. Chem. 277, 5767–5777 (2002).

    CAS  PubMed  Google Scholar 

  25. Thangada, S. et al. Cell-surface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics. J. Exp. Med. 207, 1475–1483 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Oo, M.L. et al. Engagement of S1P1-degradative mechanisms leads to vascular leak in mice. J. Clin. Invest. 121, 2290–2300 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Arnon, T.I. et al. GRK2-dependent S1P1 desensitization is required for lymphocytes to overcome their attraction to blood. Science 333, 1898–1903 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Han, M.H. et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451, 1076–1081 (2008).

    CAS  PubMed  Google Scholar 

  29. Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8, 500–508 (2002).

    CAS  PubMed  Google Scholar 

  30. Huttlin, E.L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Peng, J., Elias, J.E., Thoreen, C.C., Licklider, L.J. & Gygi, S.P. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res. 2, 43–50 (2003).

    CAS  PubMed  Google Scholar 

  32. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    CAS  Google Scholar 

  33. Huang, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Google Scholar 

  34. Krebs, E.G., Kent, A.B. & Fischer, E.H. The muscle phosphorylase b kinase reaction. J. Biol. Chem. 231, 73–83 (1958).

    CAS  PubMed  Google Scholar 

  35. Mayya, V., Rezual, K., Wu, L., Fong, M.B. & Han, D.K. Absolute quantification of multisite phosphorylation by selective reaction monitoring mass spectrometry: determination of inhibitory phosphorylation status of cyclin-dependent kinases. Mol. Cell Proteomics 5, 1146–1157 (2006).

    CAS  PubMed  Google Scholar 

  36. Chun, J. & Brinkmann, V. A mechanistically novel, first oral therapy for multiple sclerosis: the development of fingolimod (FTY720, Gilenya). Discov. Med. 12, 213–228 (2011).

    PubMed  PubMed Central  Google Scholar 

  37. Hla, T. & Brinkmann, V. Sphingosine 1-phosphate (S1P): Physiology and the effects of S1P receptor modulation. Neurology 76, S3–S8 (2011).

    CAS  PubMed  Google Scholar 

  38. Loh, K.C. et al. Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway. PLoS ONE 7, e37218 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rosen, H., Sanna, M.G., Cahalan, S.M. & Gonzalez-Cabrera, P.J. Tipping the gatekeeper: S1P regulation of endothelial barrier function. Trends Immunol. 28, 102–107 (2007).

    CAS  PubMed  Google Scholar 

  40. Lovett-Racke, A.E., Yang, Y. & Racke, M.K. Th1 versus Th17: are T cell cytokines relevant in multiple sclerosis? Biochim. Biophys. Acta 1812, 246–251 (2011).

    CAS  PubMed  Google Scholar 

  41. Youssef, S. & Steinman, L. At once harmful and beneficial: the dual properties of NF-κB. Nat. Immunol. 7, 901–902 (2006).

    CAS  PubMed  Google Scholar 

  42. Lee, M.J. et al. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279, 1552–1555 (1998).

    CAS  PubMed  Google Scholar 

  43. Schwab, S.R. et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309, 1735–1739 (2005).

    CAS  PubMed  Google Scholar 

  44. Allende, M.L., Dreier, J.L., Mandala, S. & Proia, R.L. Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J. Biol. Chem. 279, 15396–15401 (2004).

    CAS  PubMed  Google Scholar 

  45. Zhou, J. & Saba, J.D. Identification of the first mammalian sphingosine phosphate lyase gene and its functional expression in yeast. Biochem. Biophys. Res. Commun. 242, 502–507 (1998).

    CAS  PubMed  Google Scholar 

  46. Lee, H. et al. STAT3-induced S1P1 expression is crucial for persistent STAT3 activation in tumors. Nat. Med. 16, 1421–1428 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Han, M.H. et al. Janus-like opposing roles of CD47 in autoimmune brain-inflammation in humans and mice. J. Exp. Med. 209, 1325–1334 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Arac, A. et al. Systemic augmentation of αB-crystallin provides therapeutic benefit twelve hours post-stroke onset via immune modulation. Proc. Natl. Acad. Sci. USA 108, 13287–13292 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Saba (Children's Hospital Oakland Research Institute) for providing THI. Supported by Neurology Department Startup Funds, Guthy-Jackson Charitable Foundation for Neuromyelitis Optica Research (M.H.H.), and US National Institutes of Health grants R37-HL67330, PO1-HL70694 and RO1HL89934 (T.H.).

Author information

Authors and Affiliations

Authors

Contributions

C.S.G. and M.H.H. formulated the hypothesis and designed all experiments. L.W., M.P.S. and D.K.H. contributed to the phosphoproteomic analysis. V.A.B. performed the in vitro experiment with S1P1-deficient T cells, and T.H. contributed to experiments related to S1P signaling. S.A. and D.B.L. assisted with siRNA experiments, R.A.S. with the histopathological studies, and A.A. and G.K.S. with intracellular cytokine staining and flow cytometry. R.C.A., P.P.H. and L.S. contributed to the EAE-related experiments. Y.H. and B.S.M. performed immunoblots and in vitro assays.

Corresponding author

Correspondence to May H Han.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 2 and 3 (PDF 14246 kb)

Supplementary Table 1

Dataset from phosphoproteomic analysis of MS brain lesions. (XLSX 1188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garris, C., Wu, L., Acharya, S. et al. Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation. Nat Immunol 14, 1166–1172 (2013). https://doi.org/10.1038/ni.2730

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2730

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing